CHEER-Ekman: Fine-grained Embodied Emotion Classification
- URL: http://arxiv.org/abs/2506.01047v2
- Date: Tue, 03 Jun 2025 03:33:33 GMT
- Title: CHEER-Ekman: Fine-grained Embodied Emotion Classification
- Authors: Phan Anh Duong, Cat Luong, Divyesh Bommana, Tianyu Jiang,
- Abstract summary: We extend the existing binary embodied emotion dataset with Ekman's six basic emotion categories.<n>Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches.<n>Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy.
- Score: 4.762323642506733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotions manifest through physical experiences and bodily reactions, yet identifying such embodied emotions in text remains understudied. We present an embodied emotion classification dataset, CHEER-Ekman, extending the existing binary embodied emotion dataset with Ekman's six basic emotion categories. Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches on our new dataset. Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy, enabling smaller models to achieve competitive performance with larger ones. Our dataset is publicly available at: https://github.com/menamerai/cheer-ekman.
Related papers
- Empaths at SemEval-2025 Task 11: Retrieval-Augmented Approach to Perceived Emotions Prediction [83.88591755871734]
EmoRAG is a system designed to detect perceived emotions in text for SemEval-2025 Task 11, Subtask A: Multi-label Emotion Detection.<n>We focus on predicting the perceived emotions of the speaker from a given text snippet, labeling it with emotions such as joy, sadness, fear, anger, surprise, and disgust.
arXiv Detail & Related papers (2025-06-04T19:41:24Z) - Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification [56.974545305472304]
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories.<n>We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models.<n>We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three.
arXiv Detail & Related papers (2025-04-23T16:23:17Z) - Emotion Detection in Reddit: Comparative Study of Machine Learning and Deep Learning Techniques [0.0]
This study concentrates on text-based emotion detection by leveraging the GoEmotions dataset.
We employed a range of models for this task, including six machine learning models, three ensemble models, and a Long Short-Term Memory (LSTM) model.
Results indicate that the Stacking classifier outperforms other models in accuracy and performance.
arXiv Detail & Related papers (2024-11-15T16:28:25Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Learning Emotion Representations from Verbal and Nonverbal Communication [7.747924294389427]
We present EmotionCLIP, the first pre-training paradigm to extract visual emotion representations from verbal and nonverbal communication.
We guide EmotionCLIP to attend to nonverbal emotion cues through subject-aware context encoding and verbal emotion cues using sentiment-guided contrastive learning.
EmotionCLIP will address the prevailing issue of data scarcity in emotion understanding, thereby fostering progress in related domains.
arXiv Detail & Related papers (2023-05-22T21:36:55Z) - A cross-corpus study on speech emotion recognition [29.582678406878568]
This study investigates whether information learnt from acted emotions is useful for detecting natural emotions.
Four adult English datasets covering acted, elicited and natural emotions are considered.
A state-of-the-art model is proposed to accurately investigate the degradation of performance.
arXiv Detail & Related papers (2022-07-05T15:15:22Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
Next-generation artificial emotional intelligence (AEI) is taking center stage to address users' desire for deeper, more meaningful human-machine interaction.
Unlike theory of emotion, which has been the historical focus in psychology, emotion models are a descriptive tools.
This work has broad implications in social robotics, human-machine interaction, mental healthcare, and computational psychology.
arXiv Detail & Related papers (2022-06-15T15:21:30Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - GoEmotions: A Dataset of Fine-Grained Emotions [16.05879383442812]
We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral.
Our BERT-based model achieves an average F1-score of.46 across our proposed taxonomy, leaving much room for improvement.
arXiv Detail & Related papers (2020-05-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.