論文の概要: AI4Contracts: LLM & RAG-Powered Encoding of Financial Derivative Contracts
- arxiv url: http://arxiv.org/abs/2506.01063v1
- Date: Sun, 01 Jun 2025 16:05:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.248682
- Title: AI4Contracts: LLM & RAG-Powered Encoding of Financial Derivative Contracts
- Title(参考訳): AI4Contracts: LLMとRAGによる金融デリバティブ契約のエンコーディング
- Authors: Maruf Ahmed Mridul, Ian Sloyan, Aparna Gupta, Oshani Seneviratne,
- Abstract要約: 大規模言語モデル(LLM)と検索拡張生成(RAG)は、AIシステムが構造化されていないテキストから情報を抽出し整理する方法を再構築している。
本稿では,テンプレート駆動型LLMフレームワークであるCDMizerと,構造化テキスト変換のためのRAGベースのフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 1.3060230641655135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) are reshaping how AI systems extract and organize information from unstructured text. A key challenge is designing AI methods that can incrementally extract, structure, and validate information while preserving hierarchical and contextual relationships. We introduce CDMizer, a template-driven, LLM, and RAG-based framework for structured text transformation. By leveraging depth-based retrieval and hierarchical generation, CDMizer ensures a controlled, modular process that aligns generated outputs with predefined schema. Its template-driven approach guarantees syntactic correctness, schema adherence, and improved scalability, addressing key limitations of direct generation methods. Additionally, we propose an LLM-powered evaluation framework to assess the completeness and accuracy of structured representations. Demonstrated in the transformation of Over-the-Counter (OTC) financial derivative contracts into the Common Domain Model (CDM), CDMizer establishes a scalable foundation for AI-driven document understanding, structured synthesis, and automated validation in broader contexts.
- Abstract(参考訳): 大規模言語モデル(LLM)と検索拡張生成(RAG)は、AIシステムが構造化されていないテキストから情報を抽出し整理する方法を再構築している。
重要な課題は、階層的およびコンテキスト的関係を維持しながら、情報をインクリメンタルに抽出、構造化、検証できるAIメソッドを設計することである。
本稿では,テンプレート駆動型LLMフレームワークであるCDMizerと,構造化テキスト変換のためのRAGベースのフレームワークを紹介する。
深度に基づく検索と階層生成を活用することで、CDMizerは、生成した出力を事前定義されたスキーマと整列する制御されたモジュラープロセスを保証する。
テンプレート駆動のアプローチは、構文的正確性、スキーマの順守、拡張性の向上を保証し、ダイレクトジェネレーションメソッドの重要な制限に対処する。
さらに,構造化表現の完全性と精度を評価するためのLLMを用いた評価フレームワークを提案する。
CDMizerは、Over-the-Counter (OTC)の金融デリバティブ契約をCommon Domain Model (CDM)に変換することで、AI駆動のドキュメント理解、構造化合成、より広範なコンテキストにおける自動検証のためのスケーラブルな基盤を確立する。
関連論文リスト
- Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation [0.0]
大規模言語モデル(LLM)は、自然言語の理解とタスクの一般化において顕著な能力を示した。
本稿では、構造化されたプロンプトおよびフィードバック駆動型変換ロジック生成手法であるSTROT Frameworkを紹介する。
論文 参考訳(メタデータ) (2025-05-03T00:05:01Z) - SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs [70.79124435220695]
セマンティック強化型Cross-mOdal Retrievalフレームワーク(SemCORE)を提案する。
まず,自然言語の理解と生成に最適化された生成モデルとターゲット識別子を効果的に整合させる構造化自然言語識別器(SID)を構築した。
次に、粒度の細かいターゲット識別を可能にするジェネレーティブ・セマンティック・検証(GSV)戦略を導入する。
論文 参考訳(メタデータ) (2025-04-17T17:59:27Z) - Generating Structured Plan Representation of Procedures with LLMs [5.623006055588189]
本稿では,SOPを構造化表現に変換する新しい手法であるSOPStructuringを紹介する。
SOPStructは、異なるドメインにわたるSOPの標準化された表現を生成し、認知負荷を低減し、ユーザの理解を改善する。
我々の研究は、プロセスモデリングを合理化するために、大規模言語モデルの変換可能性を強調します。
論文 参考訳(メタデータ) (2025-03-28T22:38:24Z) - AssertionForge: Enhancing Formal Verification Assertion Generation with Structured Representation of Specifications and RTL [6.062811197376495]
本稿では,仕様とRTLの両方から知識グラフ(KG)を構築する新しい手法を提案する。
仕様から初期KGを作成し、RTLコードから抽出された情報と体系的に融合し、統合された総合KGとなる。
4つの設計実験により,提案手法は従来手法よりもSVAの品質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-03-24T21:53:37Z) - $\texttt{SEM-CTRL}$: Semantically Controlled Decoding [53.86639808659575]
$texttSEM-CTRL$は、LLMデコーダに直接、リッチなコンテキスト依存制約とタスクおよびインスタンス固有のセマンティクスを強制する統一的なアプローチである。
texttSEM-CTRL$は、小さな訓練済みのLLMがより大きな変種や最先端の推論モデルよりも効率的に性能を向上することを可能にする。
論文 参考訳(メタデータ) (2025-03-03T18:33:46Z) - HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling [39.14392943549792]
本稿では,階層型プロンプトチューニング(HPT)と呼ばれる新しい手法を提案し,構造化知識と従来の言語知識の同時モデリングを可能にする。
低レベルの即時学習のためのエンティティと属性間のペアワイズ関連をキャプチャする、関係誘導型アテンションモジュールを導入する。
全体意味論をモデル化する高レベルかつグローバルレベルのプロンプトを取り入れることで、提案された階層構造は、クロスレベルな相互リンクを偽造し、より複雑で長期的な関係を扱うようにモデルに権限を与える。
論文 参考訳(メタデータ) (2024-08-27T06:50:28Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。