Regulatory Graphs and GenAI for Real-Time Transaction Monitoring and Compliance Explanation in Banking
- URL: http://arxiv.org/abs/2506.01093v1
- Date: Sun, 01 Jun 2025 17:34:57 GMT
- Title: Regulatory Graphs and GenAI for Real-Time Transaction Monitoring and Compliance Explanation in Banking
- Authors: Kunal Khanvilkar, Kranthi Kommuru,
- Abstract summary: This paper presents a real-time transaction monitoring framework that integrates graph-based modeling, narrative field embedding, and generative explanation.<n>The system constructs dynamic transaction graphs, extracts structural and contextual features, and classifies suspicious behavior using a graph neural network.<n>Experiments conducted on a simulated stream of financial data show that the proposed method achieves superior results, with 98.2% F1-score, 97.8% precision, and 97.0% recall.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a real-time transaction monitoring framework that integrates graph-based modeling, narrative field embedding, and generative explanation to support automated financial compliance. The system constructs dynamic transaction graphs, extracts structural and contextual features, and classifies suspicious behavior using a graph neural network. A retrieval-augmented generation module generates natural language explanations aligned with regulatory clauses for each flagged transaction. Experiments conducted on a simulated stream of financial data show that the proposed method achieves superior results, with 98.2% F1-score, 97.8% precision, and 97.0% recall. Expert evaluation further confirms the quality and interpretability of generated justifications. The findings demonstrate the potential of combining graph intelligence and generative models to support explainable, audit-ready compliance in high-risk financial environments.
Related papers
- FinAI-BERT: A Transformer-Based Model for Sentence-Level Detection of AI Disclosures in Financial Reports [6.324803752309524]
This study introduces FinAI-BERT, a domain-adapted transformer-based language model designed to classify AI-related content at the sentence level within financial texts.<n>The model was fine-tuned on a manually curated and balanced dataset of 1,586 sentences drawn from 669 annual reports of U.S. banks.
arXiv Detail & Related papers (2025-06-29T09:33:29Z) - Structuring the Unstructured: A Multi-Agent System for Extracting and Querying Financial KPIs and Guidance [54.25184684077833]
We propose an efficient and scalable method for extracting quantitative insights from unstructured financial documents.<n>Our proposed system consists of two specialized agents: the emphExtraction Agent and the emphText-to-Agent
arXiv Detail & Related papers (2025-05-25T15:45:46Z) - Financial Fraud Detection Using Explainable AI and Stacking Ensemble Methods [0.6642919568083927]
We propose a fraud detection framework that combines a stacking ensemble of gradient boosting models: XGBoost, LightGBM, and CatBoost.<n>XAI techniques are used to enhance the transparency and interpretability of the model's decisions.
arXiv Detail & Related papers (2025-05-15T07:53:02Z) - Detecting Credit Card Fraud via Heterogeneous Graph Neural Networks with Graph Attention [2.7002727600755883]
This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN)<n>By leveraging graph neural networks, the model captures higher-order transaction relationships.<n>The model achieves notable improvements in both accuracy and OC-ROC.
arXiv Detail & Related papers (2025-04-11T00:53:53Z) - Towards a Foundation Purchasing Model: Pretrained Generative
Autoregression on Transaction Sequences [0.0]
We present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions.
We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions.
arXiv Detail & Related papers (2024-01-03T09:32:48Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
Super-Apps have changed the way we think about the interactions between users and commerce.
This paper investigates how different interactions between users within a Super-App provide a new source of information to predict borrower behavior.
arXiv Detail & Related papers (2021-02-19T15:13:06Z) - Navigating the Dynamics of Financial Embeddings over Time [0.0]
We propose the application of Graph Representation Learning in a scalable dynamic setting.
We perform a rigorous qualitative analysis of the latent trajectories to extract real world insights.
arXiv Detail & Related papers (2020-07-01T16:27:31Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.