Detecting Credit Card Fraud via Heterogeneous Graph Neural Networks with Graph Attention
- URL: http://arxiv.org/abs/2504.08183v1
- Date: Fri, 11 Apr 2025 00:53:53 GMT
- Title: Detecting Credit Card Fraud via Heterogeneous Graph Neural Networks with Graph Attention
- Authors: Qiuwu Sha, Tengda Tang, Xinyu Du, Jie Liu, Yixian Wang, Yuan Sheng,
- Abstract summary: This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN)<n>By leveraging graph neural networks, the model captures higher-order transaction relationships.<n>The model achieves notable improvements in both accuracy and OC-ROC.
- Score: 2.7002727600755883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN) to address fraud in complex transaction networks. Unlike traditional machine learning methods that rely solely on numerical features of transaction records, this approach constructs heterogeneous transaction graphs. These graphs incorporate multiple node types, including users, merchants, and transactions. By leveraging graph neural networks, the model captures higher-order transaction relationships. A Graph Attention Mechanism is employed to dynamically assign weights to different transaction relationships. Additionally, a Temporal Decay Mechanism is integrated to enhance the model's sensitivity to time-related fraud patterns. To address the scarcity of fraudulent transaction samples, this study applies SMOTE oversampling and Cost-sensitive Learning. These techniques strengthen the model's ability to identify fraudulent transactions. Experimental results demonstrate that the proposed method outperforms existing GNN models, including GCN, GAT, and GraphSAGE, on the IEEE-CIS Fraud Detection dataset. The model achieves notable improvements in both accuracy and OC-ROC. Future research may explore the integration of dynamic graph neural networks and reinforcement learning. Such advancements could enhance the real-time adaptability of fraud detection systems and provide more intelligent solutions for financial risk control.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection.
It combines the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks.
A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity.
arXiv Detail & Related papers (2024-07-09T03:59:06Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data [0.0]
This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection.
GANs have shown promise in modeling complex data distributions, making them effective tools for anomaly detection.
The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.
arXiv Detail & Related papers (2024-02-15T09:48:20Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
We propose a novel graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems.
Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework.
We introduce a transformer module to learn local and global information.
arXiv Detail & Related papers (2023-07-11T08:56:53Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - How effective are Graph Neural Networks in Fraud Detection for Network
Data? [0.0]
Graph-based Neural Networks (GNNs) are recent models created for learning representations of nodes (and graphs)
Financial fraud stands out for its socioeconomic relevance and for presenting particular challenges, such as the extreme imbalance between the positive (fraud) and negative (legitimate transactions) classes.
We conduct experiments to evaluate existing techniques for detecting network fraud, considering the two previous challenges.
arXiv Detail & Related papers (2021-05-30T15:17:13Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.