Generic Token Compression in Multimodal Large Language Models from an Explainability Perspective
- URL: http://arxiv.org/abs/2506.01097v1
- Date: Sun, 01 Jun 2025 17:44:16 GMT
- Title: Generic Token Compression in Multimodal Large Language Models from an Explainability Perspective
- Authors: Lei Lei, Jie Gu, Xiaokang Ma, Chu Tang, Jingmin Chen, Tong Xu,
- Abstract summary: Existing Multimodal Large Language Models (MLLMs) process a large number of visual tokens, leading to significant computational costs and inefficiency.<n>We show that token compression is feasible at the input stage of LLM with negligible performance loss.<n>We propose to learn a mapping from the attention map of the first LLM layer to the explanation results, thereby avoiding the need for a full inference pass.
- Score: 6.258220461022373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Multimodal Large Language Models (MLLMs) process a large number of visual tokens, leading to significant computational costs and inefficiency. Previous works generally assume that all visual tokens are necessary in the shallow layers of LLMs, and therefore token compression typically occurs in intermediate layers. In contrast, our study reveals an interesting insight: with proper selection, token compression is feasible at the input stage of LLM with negligible performance loss. Specifically, we reveal that explainability methods can effectively evaluate the importance of each visual token with respect to the given instruction, which can well guide the token compression. Furthermore, we propose to learn a mapping from the attention map of the first LLM layer to the explanation results, thereby avoiding the need for a full inference pass and facilitating practical deployment. Interestingly, this mapping can be learned using a simple and lightweight convolutional network, whose training is efficient and independent of MLLMs. Extensive experiments on 10 image and video benchmarks across three leading MLLMs (Qwen2-VL, LLaVA-OneVision, and VILA1.5) demonstrate the effectiveness of our approach, e.g., pruning 50% visual tokens while retaining more than 96% of the original performance across all benchmarks for all these three MLLMs. It also exhibits strong generalization, even when the number of tokens in inference far exceeds that used in training.
Related papers
- [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.<n>However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.<n>We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.<n>We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)<n>DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
Multimodal Large Language Models (MLLMs) treat visual tokens from visual encoders as text tokens.<n>As token counts grow, the quadratic scaling of computation in LLMs introduces an efficiency bottleneck.<n>In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA.
arXiv Detail & Related papers (2024-10-08T16:13:24Z) - Matryoshka Multimodal Models [92.41824727506751]
We propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens.
We find that COCO-style benchmarks only need around 9 visual tokens to obtain accuracy similar to that of using all 576 tokens.
arXiv Detail & Related papers (2024-05-27T17:59:56Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
We introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference.<n>VTW strategically withdraws vision tokens at a certain layer, enabling only text tokens to engage in subsequent layers.<n>Our approach can cut computational overhead by over 40% across diverse multimodal tasks while maintaining performance.
arXiv Detail & Related papers (2024-05-09T14:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.