SVarM: Linear Support Varifold Machines for Classification and Regression on Geometric Data
- URL: http://arxiv.org/abs/2506.01189v1
- Date: Sun, 01 Jun 2025 21:55:15 GMT
- Title: SVarM: Linear Support Varifold Machines for Classification and Regression on Geometric Data
- Authors: Emmanuel Hartman, Nicolas Charon,
- Abstract summary: This work proposes SVarM to exploit varifold representations of shapes as measures and their duality with test functions.<n>We develop classification and regression models on shape datasets by introducing a neural network-based representation of the trainable test function.
- Score: 4.212663349859165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite progress in the rapidly developing field of geometric deep learning, performing statistical analysis on geometric data--where each observation is a shape such as a curve, graph, or surface--remains challenging due to the non-Euclidean nature of shape spaces, which are defined as equivalence classes under invariance groups. Building machine learning frameworks that incorporate such invariances, notably to shape parametrization, is often crucial to ensure generalizability of the trained models to new observations. This work proposes SVarM to exploit varifold representations of shapes as measures and their duality with test functions $h:\mathbb{R}^n \times S^{n-1} \to \mathbb{R}$. This method provides a general framework akin to linear support vector machines but operating instead over the infinite-dimensional space of varifolds. We develop classification and regression models on shape datasets by introducing a neural network-based representation of the trainable test function $h$. This approach demonstrates strong performance and robustness across various shape graph and surface datasets, achieving results comparable to state-of-the-art methods while significantly reducing the number of trainable parameters.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Manifold Learning with Normalizing Flows: Towards Regularity, Expressivity and Iso-Riemannian Geometry [8.020732438595905]
This work focuses on addressing distortions and modeling errors that can arise in the multi-modal setting.<n>We showcase the effectiveness of the synergy of the proposed approaches in several numerical experiments with both synthetic and real data.
arXiv Detail & Related papers (2025-05-12T21:44:42Z) - Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations [0.0]
We introduce enf2enf, an encoder--decoder methodology for predicting steady-state Partial Differential Equations.<n>Our method supports real time inference and zero-shot super-resolution, enabling efficient training on low-resolution meshes.
arXiv Detail & Related papers (2025-04-24T08:30:32Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Graph Structure Inference with BAM: Introducing the Bilinear Attention
Mechanism [31.99564199048314]
We propose a novel neural network model for supervised graph structure learning.
The model is trained with variably shaped and coupled input data.
Our method demonstrates robust generalizability across both linear and various types of non-linear dependencies.
arXiv Detail & Related papers (2024-02-12T15:48:58Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Leveraging Equivariant Features for Absolute Pose Regression [9.30597356471664]
We show that a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space.
We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations.
arXiv Detail & Related papers (2022-04-05T12:44:20Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
We introduce DID, a pairwise dissimilarity measure applicable to a wide range of data spaces.
We prove that DID enjoys properties which make it relevant for theoretical study and practical use.
arXiv Detail & Related papers (2022-02-11T13:51:30Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
We employ tools and insights from differential geometry to offer a novel perspective on orthogonal RNNs.
We show that orthogonal RNNs may be viewed as optimizing in the space of divergence-free vector fields.
Motivated by this observation, we study a new recurrent model, which spans the entire space of vector fields.
arXiv Detail & Related papers (2021-02-18T19:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.