Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2202.12457v1
- Date: Fri, 25 Feb 2022 01:50:22 GMT
- Title: Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection
- Authors: L. Zancato, A. Achille, G. Paolini, A. Chiuso, S. Soatto
- Abstract summary: We present an end-to-end differentiable neural network architecture to perform anomaly detection in multivariate time series.
The architecture is a cascade of dynamical systems designed to separate linearly predictable components of the signal.
The anomaly detector exploits the temporal structure of the prediction residuals to detect both isolated point anomalies and set-point changes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an end-to-end differentiable neural network architecture to
perform anomaly detection in multivariate time series by incorporating a
Sequential Probability Ratio Test on the prediction residual. The architecture
is a cascade of dynamical systems designed to separate linearly predictable
components of the signal such as trends and seasonality, from the non-linear
ones. The former are modeled by local Linear Dynamic Layers, and their residual
is fed to a generic Temporal Convolutional Network that also aggregates global
statistics from different time series as context for the local predictions of
each one. The last layer implements the anomaly detector, which exploits the
temporal structure of the prediction residuals to detect both isolated point
anomalies and set-point changes. It is based on a novel application of the
classic CUMSUM algorithm, adapted through the use of a variational
approximation of f-divergences. The model automatically adapts to the time
scales of the observed signals. It approximates a SARIMA model at the get-go,
and auto-tunes to the statistics of the signal and its covariates, without the
need for supervision, as more data is observed. The resulting system, which we
call STRIC, outperforms both state-of-the-art robust statistical methods and
deep neural network architectures on multiple anomaly detection benchmarks.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Robust Audio Anomaly Detection [10.75127981612396]
The presented approach doesn't assume the presence of labeled anomalies in the training dataset.
The temporal dynamics are modeled using recurrent layers augmented with attention mechanism.
The output of the network is an outlier robust probability density function.
arXiv Detail & Related papers (2022-02-03T17:19:42Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - LSTM-based Anomaly Detection for Non-linear Dynamical System [11.797156206007612]
We propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM)
We first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection.
Our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset.
arXiv Detail & Related papers (2020-06-05T01:09:36Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.