React to Surprises: Stable-by-Design Neural Feedback Control and the Youla-REN
- URL: http://arxiv.org/abs/2506.01226v2
- Date: Wed, 04 Jun 2025 01:56:15 GMT
- Title: React to Surprises: Stable-by-Design Neural Feedback Control and the Youla-REN
- Authors: Nicholas H. Barbara, Ruigang Wang, Alexandre Megretski, Ian R. Manchester,
- Abstract summary: We study parameterizations of stabilizing nonlinear policies for learning-based control.<n>We propose a structure based on a nonlinear version of the Youla-Kucera parameterization combined with robust neural networks.
- Score: 43.988843102040725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study parameterizations of stabilizing nonlinear policies for learning-based control. We propose a structure based on a nonlinear version of the Youla-Kucera parameterization combined with robust neural networks such as the recurrent equilibrium network (REN). The resulting parameterizations are unconstrained, and hence can be searched over with first-order optimization methods, while always ensuring closed-loop stability by construction. We study the combination of (a) nonlinear dynamics, (b) partial observation, and (c) incremental closed-loop stability requirements (contraction and Lipschitzness). We find that with any two of these three difficulties, a contracting and Lipschitz Youla parameter always leads to contracting and Lipschitz closed loops. However, if all three hold, then incremental stability can be lost with exogenous disturbances. Instead, a weaker condition is maintained, which we call d-tube contraction and Lipschitzness. We further obtain converse results showing that the proposed parameterization covers all contracting and Lipschitz closed loops for certain classes of nonlinear systems. Numerical experiments illustrate the utility of our parameterization when learning controllers with built-in stability certificates for: (i) "economic" rewards without stabilizing effects; (ii) short training horizons; and (iii) uncertain systems.
Related papers
- Learning Over Contracting and Lipschitz Closed-Loops for
Partially-Observed Nonlinear Systems (Extended Version) [1.2430809884830318]
This paper presents a policy parameterization for learning-based control on nonlinear, partially-observed dynamical systems.
We prove that the resulting Youla-REN parameterization automatically satisfies stability (contraction) and user-tunable robustness (Lipschitz) conditions.
We find that the Youla-REN performs similarly to existing learning-based and optimal control methods while also ensuring stability and exhibiting improved robustness to adversarial disturbances.
arXiv Detail & Related papers (2023-04-12T23:55:56Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems [0.0]
We propose a Neural SLS (Neur-SLS) approach guaranteeing closed-loop stability during and after parameter optimization.
We exploit recent Deep Neural Network (DNN) models based on Recurrent Equilibrium Networks (RENs) to learn over a rich class of nonlinear stable operators.
arXiv Detail & Related papers (2022-03-22T15:22:31Z) - Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability
Guarantees [5.71097144710995]
This paper presents a parameterization of nonlinear controllers for uncertain systems building on a recently developed neural network architecture.
The proposed framework has "built-in" guarantees of stability, i.e., all policies in the search space result in a contracting (globally exponentially stable) closed-loop system.
arXiv Detail & Related papers (2021-12-02T13:52:37Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Concurrent Learning Based Tracking Control of Nonlinear Systems using
Gaussian Process [2.7930955543692817]
This paper demonstrates the applicability of the combination of concurrent learning as a tool for parameter estimation and non-parametric Gaussian Process for online disturbance learning.
A control law is developed by using both techniques sequentially in the context of feedback linearization.
The closed-loop system stability for the nth-order system is proven using the Lyapunov stability theorem.
arXiv Detail & Related papers (2021-06-02T02:59:48Z) - Reinforcement learning for linear-convex models with jumps via stability
analysis of feedback controls [7.969435896173812]
We study a finite linear-time continuous-time horizon learning problems an episodic setting.
In this problem, the unknown jump-dif process is controlled to nonsmooth convex costs.
arXiv Detail & Related papers (2021-04-19T13:50:52Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
We show that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.
Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks.
arXiv Detail & Related papers (2020-06-22T08:44:52Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.