論文の概要: Abstractive Visual Understanding of Multi-modal Structured Knowledge: A New Perspective for MLLM Evaluation
- arxiv url: http://arxiv.org/abs/2506.01293v1
- Date: Mon, 02 Jun 2025 04:00:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.023532
- Title: Abstractive Visual Understanding of Multi-modal Structured Knowledge: A New Perspective for MLLM Evaluation
- Title(参考訳): マルチモーダル構造化知識の抽象的視覚的理解:MLLM評価の新しい視点
- Authors: Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Min Zhang, Wen Zhang, Huajun Chen,
- Abstract要約: MLLM(Multi-modal large language model)は、多種多様なシナリオやオブジェクトの包括的理解を可能にする。
MLLMの評価ベンチマークやリーダーボードの普及にもかかわらず、彼らはMLLMが視覚的に現れる構造化された抽象化で世界的知識を理解する上で重要な能力を見落としている。
構造化理解のためのマルチモーダルマップを基盤とした,革新的なベンチマークであるM3STRを提案する。
その結果,抽象的視覚情報を構造化知識で処理し,MLLMの総合的推論能力を向上させるための重要な軌道を図った。
- 参考スコア(独自算出の注目度): 48.462734327375536
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-modal large language models (MLLMs) incorporate heterogeneous modalities into LLMs, enabling a comprehensive understanding of diverse scenarios and objects. Despite the proliferation of evaluation benchmarks and leaderboards for MLLMs, they predominantly overlook the critical capacity of MLLMs to comprehend world knowledge with structured abstractions that appear in visual form. To address this gap, we propose a novel evaluation paradigm and devise M3STR, an innovative benchmark grounded in the Multi-Modal Map for STRuctured understanding. This benchmark leverages multi-modal knowledge graphs to synthesize images encapsulating subgraph architectures enriched with multi-modal entities. M3STR necessitates that MLLMs not only recognize the multi-modal entities within the visual inputs but also decipher intricate relational topologies among them. We delineate the benchmark's statistical profiles and automated construction pipeline, accompanied by an extensive empirical analysis of 26 state-of-the-art MLLMs. Our findings reveal persistent deficiencies in processing abstractive visual information with structured knowledge, thereby charting a pivotal trajectory for advancing MLLMs' holistic reasoning capacities. Our code and data are released at https://github.com/zjukg/M3STR
- Abstract(参考訳): MLLM(Multi-modal large language model)は、多種多様なシナリオやオブジェクトの包括的理解を可能にする。
MLLMの評価ベンチマークやリーダーボードの普及にもかかわらず、彼らはMLLMが視覚的に現れる構造化された抽象化で世界的知識を理解する上で重要な能力を見落としている。
このギャップに対処するため、我々は新しい評価パラダイムを提案し、構造化理解のためのマルチモーダルマップに基盤を置く革新的なベンチマークであるM3STRを考案した。
このベンチマークは、マルチモーダルな知識グラフを利用して、マルチモーダルなエンティティに富んだサブグラフアーキテクチャをカプセル化した画像を合成する。
M3STRは、MLLMが視覚入力内のマルチモーダルな実体を認識するだけでなく、それらの間の複雑な関係トポロジーを解読する必要がある。
ベンチマークの統計プロファイルと自動構築パイプラインについて,26の最先端MLLMの広範な実験的な分析を行った。
その結果,抽象的視覚情報を構造化知識で処理し,MLLMの総合的推論能力を向上させるための重要な軌道を図った。
私たちのコードとデータはhttps://github.com/zjukg/M3STRで公開されています。
関連論文リスト
- Survey of different Large Language Model Architectures: Trends, Benchmarks, and Challenges [15.850548556536538]
大規模言語モデル(LLMs)は、自然言語の理解に精通したディープラーニングモデルのクラスである。
これらのモデルの先進的なサブセットであるMultimodal Large Language Models (MLLM)は、複数のデータモダリティを処理および解釈するためにLLM機能を拡張している。
本調査は,LLMの最近の進歩を概観する。
論文 参考訳(メタデータ) (2024-12-04T11:14:06Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - Ovis: Structural Embedding Alignment for Multimodal Large Language Model [41.32013722697081]
Ovisは、視覚とテキストの埋め込みを構造的に整列するように設計された新しいMLLMアーキテクチャである。
Ovisは学習可能なビジュアル埋め込みテーブルをビジュアルエンコーダのプロセスに統合する。
様々なマルチモーダルベンチマークにおける実証的な評価は、OvisがオープンソースMLLMよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-05-31T13:59:18Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。