A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs
- URL: http://arxiv.org/abs/2505.23006v1
- Date: Thu, 29 May 2025 02:30:27 GMT
- Title: A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs
- Authors: Chiwan Park, Wonjun Jang, Daeryong Kim, Aelim Ahn, Kichang Yang, Woosung Hwang, Jihyeon Roh, Hyerin Park, Hyosun Wang, Min Seok Kim, Jihoon Kang,
- Abstract summary: Large Language Models (LLMs) have led to significant improvements in various service domains.<n>Applying state-of-the-art (SOTA) research to industrial settings presents challenges.
- Score: 2.7905014064567344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of Large Language Models (LLMs) has led to significant improvements in various service domains, including search, recommendation, and chatbot applications. However, applying state-of-the-art (SOTA) research to industrial settings presents challenges, as it requires maintaining flexible conversational abilities while also strictly complying with service-specific constraints. This can be seen as two conflicting requirements due to the probabilistic nature of LLMs. In this paper, we propose our approach to addressing this challenge and detail the strategies we employed to overcome their inherent limitations in real-world applications. We conduct a practical case study of a conversational agent designed for the e-commerce domain, detailing our implementation workflow and optimizations. Our findings provide insights into bridging the gap between academic research and real-world application, introducing a framework for developing scalable, controllable, and reliable AI-driven agents.
Related papers
- ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research [53.736407871322314]
We introduce ORMind, a cognitive-inspired framework that enhances optimization through counterfactual reasoning.<n>Our approach emulates human cognition, implementing an end-to-end workflow that transforms requirements into mathematical models and executable code.<n>It is currently being tested internally in Lenovo's AI Assistant, with plans to enhance optimization capabilities for both business and consumer customers.
arXiv Detail & Related papers (2025-06-02T05:11:21Z) - ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)<n>We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.<n>We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
arXiv Detail & Related papers (2025-04-26T03:43:03Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems [0.21756081703275998]
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs)<n>The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications.<n>We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Booking System and an Interactive Ticket Copilot.
arXiv Detail & Related papers (2025-01-20T17:19:02Z) - Practical Considerations for Agentic LLM Systems [5.455744338342196]
This paper frames actionable insights and considerations from the research community in the context of established application paradigms.<n> Namely, we position relevant research findings into four broad categories--Planning, Memory Tools, and Control Flow--based on common practices in application-focused literature.
arXiv Detail & Related papers (2024-12-05T11:57:49Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.<n>We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.