Target Driven Adaptive Loss For Infrared Small Target Detection
- URL: http://arxiv.org/abs/2506.01349v1
- Date: Mon, 02 Jun 2025 06:11:29 GMT
- Title: Target Driven Adaptive Loss For Infrared Small Target Detection
- Authors: Yuho Shoji, Takahiro Toizumi, Atsushi Ito,
- Abstract summary: We propose a target driven adaptive (TDA) loss to enhance the performance of infrared small target detection (IRSTD)<n>We evaluate the proposed method on three datasets for IRSTD.
- Score: 0.5803309695504829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a target driven adaptive (TDA) loss to enhance the performance of infrared small target detection (IRSTD). Prior works have used loss functions, such as binary cross-entropy loss and IoU loss, to train segmentation models for IRSTD. Minimizing these loss functions guides models to extract pixel-level features or global image context. However, they have two issues: improving detection performance for local regions around the targets and enhancing robustness to small scale and low local contrast. To address these issues, the proposed TDA loss introduces a patch-based mechanism, and an adaptive adjustment strategy to scale and local contrast. The proposed TDA loss leads the model to focus on local regions around the targets and pay particular attention to targets with smaller scales and lower local contrast. We evaluate the proposed method on three datasets for IRSTD. The results demonstrate that the proposed TDA loss achieves better detection performance than existing losses on these datasets.
Related papers
- YOLO-RS: Remote Sensing Enhanced Crop Detection Methods [0.32985979395737786]
Existing target detection methods show poor performance when dealing with small targets in remote sensing images.<n>YOLO-RS is based on the latest Yolov11 which significantly enhances the detection of small targets.<n>Experiments validate the effectiveness and application potential of YOLO-RS in the task of detecting small targets in remote sensing images.
arXiv Detail & Related papers (2025-04-15T13:13:22Z) - Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection [0.4398130586098371]
We propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network.<n>PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters.<n>We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection.
arXiv Detail & Related papers (2024-12-22T12:04:02Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
arXiv Detail & Related papers (2024-07-22T04:32:43Z) - Feature Corrective Transfer Learning: End-to-End Solutions to Object Detection in Non-Ideal Visual Conditions [11.90136900277127]
"Feature Corrective Transfer Learning" is a novel approach to facilitate the end-to-end detection of objects in challenging scenarios.
Non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model.
This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction.
arXiv Detail & Related papers (2024-04-17T09:58:53Z) - Infrared Small Target Detection with Scale and Location Sensitivity [19.89762494490961]
In this paper, we focus on boosting detection performance with a more effective loss but a simpler model structure.
Specifically, we first propose a novel Scale and Location Sensitive (SLS) loss to handle the limitations of existing losses.
By applying SLS loss to each scale of the predictions, our MSHNet outperforms existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2024-03-28T12:28:58Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
We propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimize for the L2 metric without the need of generating pairs.
We evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures.
arXiv Detail & Related papers (2023-06-01T12:53:10Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.