Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2407.15369v1
- Date: Mon, 22 Jul 2024 04:32:43 GMT
- Title: Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection
- Authors: Fei Zhou, Maixia Fu, Yulei Qian, Jian Yang, Yimian Dai,
- Abstract summary: This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
- Score: 15.605122893098981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection is crucial for the efficacy of infrared search and tracking systems. Current tensor decomposition methods emphasize representing small targets with sparsity but struggle to separate targets from complex backgrounds due to insufficient use of intrinsic directional information and reduced target visibility during decomposition. To address these challenges, this study introduces a Sparse Differential Directionality prior (SDD) framework. SDD leverages the distinct directional characteristics of targets to differentiate them from the background, applying mixed sparse constraints on the differential directional images and continuity difference matrix of the temporal component, both derived from Tucker decomposition. We further enhance target detectability with a saliency coherence strategy that intensifies target contrast against the background during hierarchical decomposition. A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model. Experimental results on several real-world datasets validate our method's effectiveness, outperforming ten state-of-the-art methods in target detection and clutter suppression. Our code is available at https://github.com/GrokCV/SDD.
Related papers
- Dim Small Target Detection and Tracking: A Novel Method Based on Temporal Energy Selective Scaling and Trajectory Association [8.269449428849867]
In this article, we analyze the difficulty based on spatial features and the feasibility based on temporal features of realizing effective detection.
According to this analysis, we use a multi-frame as a detection unit and propose a detection method based on temporal energy selective scaling (TESS)
For the target-present pixel, the target passing through the pixel will bring a weak transient disturbance on the intensity temporal profiles (ITPs) formed by pixels.
We use a well-designed function to amplify the transient disturbance, suppress the background and noise components, and output the trajectory of the target on the multi-frame detection unit
arXiv Detail & Related papers (2024-05-15T03:02:21Z) - Mitigate Target-level Insensitivity of Infrared Small Target Detection
via Posterior Distribution Modeling [5.248337726304453]
Infrared Small Target Detection (IRSTD) aims to segment small targets from infrared clutter background.
We propose a diffusion model framework for Infrared Small Target Detection which compensates pixel-level discriminant with mask posterior distribution modeling.
Experiments show that the proposed method achieves competitive performance gains over state-of-the-art methods on NUAA-SIRST, IRSTD-1k, and NUDT-SIRST datasets.
arXiv Detail & Related papers (2024-03-13T09:45:30Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection [10.202639589226076]
This work proposes an interpretable deep network for detecting infrared dim targets, dubbed RPCANet.
Our approach formulates the ISTD task as sparse target extraction, low-rank background estimation, and image reconstruction.
By unfolding the iterative optimization updating steps into a deep-learning framework, time-consuming and complex matrix calculations are replaced by theory-guided neural networks.
arXiv Detail & Related papers (2023-11-02T01:21:12Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
Single-frame infrared small target detection is considered to be a challenging task.
Due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target.
We propose an enhancing feature learning network (EFLNet) to address these problems.
arXiv Detail & Related papers (2023-07-27T09:23:22Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - Multiple Infrared Small Targets Detection based on Hierarchical Maximal
Entropy Random Walk [12.10092482860325]
We establish a detection method derived from maximal entropy random walk (MERW) to robustly detect multiple small targets.
The proposed method is superior to the state-of-the-art methods in terms of target enhancement, background suppression and multiple small targets detection.
arXiv Detail & Related papers (2020-10-02T11:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.