Unraveling Spatio-Temporal Foundation Models via the Pipeline Lens: A Comprehensive Review
- URL: http://arxiv.org/abs/2506.01364v1
- Date: Mon, 02 Jun 2025 06:46:42 GMT
- Title: Unraveling Spatio-Temporal Foundation Models via the Pipeline Lens: A Comprehensive Review
- Authors: Yuchen Fang, Hao Miao, Yuxuan Liang, Liwei Deng, Yue Cui, Ximu Zeng, Yuyang Xia, Yan Zhao, Torben Bach Pedersen, Christian S. Jensen, Xiaofang Zhou, Kai Zheng,
- Abstract summary: deep learning models to utilize useful patterns in such data to support tasks like prediction.<n>Previous deep learning models typically require separate training for each use case.<n>These foundation models have, offering a unified framework capable of solving multiple tasks.
- Score: 37.66524791103493
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatio-temporal deep learning models aims to utilize useful patterns in such data to support tasks like prediction. However, previous deep learning models designed for specific tasks typically require separate training for each use case, leading to increased computational and storage costs. To address this issue, spatio-temporal foundation models have emerged, offering a unified framework capable of solving multiple spatio-temporal tasks. These foundation models achieve remarkable success by learning general knowledge with spatio-temporal data or transferring the general capabilities of pre-trained language models. While previous surveys have explored spatio-temporal data and methodologies separately, they have ignored a comprehensive examination of how foundation models are designed, selected, pre-trained, and adapted. As a result, the overall pipeline for spatio-temporal foundation models remains unclear. To bridge this gap, we innovatively provide an up-to-date review of previous spatio-temporal foundation models from the pipeline perspective. The pipeline begins with an introduction to different types of spatio-temporal data, followed by details of data preprocessing and embedding techniques. The pipeline then presents a novel data property taxonomy to divide existing methods according to data sources and dependencies, providing efficient and effective model design and selection for researchers. On this basis, we further illustrate the training objectives of primitive models, as well as the adaptation techniques of transferred models. Overall, our survey provides a clear and structured pipeline to understand the connection between core elements of spatio-temporal foundation models while guiding researchers to get started quickly. Additionally, we introduce emerging opportunities such as multi-objective training in the field of spatio-temporal foundation models.
Related papers
- Foundation Models for Time Series: A Survey [0.27835153780240135]
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis.<n>This survey introduces a novel taxonomy to categorize them across several dimensions.
arXiv Detail & Related papers (2025-04-05T01:27:55Z) - Measuring Pre-training Data Quality without Labels for Time Series Foundation Models [10.64362760848387]
We introduce contrastive accuracy, a new measure to evaluate the quality of the representation space learned by the foundation model.<n>Our experiments reveal the positive correlation between the proposed measure and the accuracy of the model on a collection of downstream tasks.
arXiv Detail & Related papers (2024-12-09T10:38:30Z) - Exploring Representations and Interventions in Time Series Foundation Models [17.224575072056627]
Time series foundation models (TSFMs) promise to be powerful tools for a wide range of applications.<n>Their internal representations and learned concepts are still not well understood.<n>This study investigates the structure and redundancy of representations across various TSFMs.
arXiv Detail & Related papers (2024-09-19T17:11:27Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
A foundation model is a machine learning model trained on a large and diverse set of data.
We develop an effective time series foundation model by leveraging unlabeled samples from multiple domains.
arXiv Detail & Related papers (2023-10-05T21:44:50Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - A Critical Look at the Current Usage of Foundation Model for Dense
Recognition Task [26.938332354370814]
Large model trained on huge amount of cross-modality data, which is usually be termed as foundation model, achieves conspicuous accomplishment in many fields.
It is still unclear whether those foundation models can be applied to other different downstream tasks.
arXiv Detail & Related papers (2023-07-06T08:57:53Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models [89.44031286278347]
We propose a Hub-Pathway framework to enable knowledge transfer from a model hub.
The proposed framework can be trained end-to-end with the target task-specific loss.
Experiment results on computer vision and reinforcement learning tasks demonstrate that the framework achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-06-08T08:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.