MMD-Flagger: Leveraging Maximum Mean Discrepancy to Detect Hallucinations
- URL: http://arxiv.org/abs/2506.01367v1
- Date: Mon, 02 Jun 2025 06:50:58 GMT
- Title: MMD-Flagger: Leveraging Maximum Mean Discrepancy to Detect Hallucinations
- Authors: Kensuke Mitsuzawa, Damien Garreau,
- Abstract summary: We propose a new method to flag hallucinated content, MMD-Flagger.<n>It relies on Maximum Mean Discrepancy (MMD), a non-parametric distance between distributions.<n>On a high-level perspective, MMD-Flagger tracks the MMD between the generated documents and documents generated with various temperature parameters.
- Score: 6.836945436656676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have become pervasive in our everyday life. Yet, a fundamental obstacle prevents their use in many critical applications: their propensity to generate fluent, human-quality content that is not grounded in reality. The detection of such hallucinations is thus of the highest importance. In this work, we propose a new method to flag hallucinated content, MMD-Flagger. It relies on Maximum Mean Discrepancy (MMD), a non-parametric distance between distributions. On a high-level perspective, MMD-Flagger tracks the MMD between the generated documents and documents generated with various temperature parameters. We show empirically that inspecting the shape of this trajectory is sufficient to detect most hallucinations. This novel method is benchmarked on two machine translation datasets, on which it outperforms natural competitors.
Related papers
- ICR Probe: Tracking Hidden State Dynamics for Reliable Hallucination Detection in LLMs [50.18087419133284]
hallucination detection methods leveraging hidden states predominantly focus on static and isolated representations.<n>We introduce a novel metric, the ICR Score, which quantifies the contribution of modules to the hidden states' update.<n>We propose a hallucination detection method, the ICR Probe, which captures the cross-layer evolution of hidden states.
arXiv Detail & Related papers (2025-07-22T11:44:26Z) - HIDE and Seek: Detecting Hallucinations in Language Models via Decoupled Representations [17.673293240849787]
Contemporary Language Models (LMs) often generate content that is factually incorrect or unfaithful to the input context.<n>We propose a single-pass, training-free approach for effective Hallucination detectIon via Decoupled rEpresentations (HIDE)<n>Our results demonstrate that HIDE outperforms other single-pass methods in almost all settings.
arXiv Detail & Related papers (2025-06-21T16:02:49Z) - MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
arXiv Detail & Related papers (2025-05-30T05:54:36Z) - REFIND at SemEval-2025 Task 3: Retrieval-Augmented Factuality Hallucination Detection in Large Language Models [15.380441563675243]
REFIND (Retrieval-augmented Factuality hallucINation Detection) is a novel framework that detects hallucinated spans within large language model (LLM) outputs.<n>We propose the Context Sensitivity Ratio (CSR), a novel metric that quantifies the sensitivity of LLM outputs to retrieved evidence.<n> REFIND demonstrated robustness across nine languages, including low-resource settings, and significantly outperformed baseline models.
arXiv Detail & Related papers (2025-02-19T10:59:05Z) - Hallucination Detection: A Probabilistic Framework Using Embeddings Distance Analysis [2.089191490381739]
We introduce a mathematically sound methodology to reason about hallucination, and leverage it to build a tool to detect hallucinations.<n>To the best of our knowledge, we are the first to show that hallucinated content has structural differences with respect to correct content.<n>We leverage these structural differences to develop a tool to detect hallucinated responses, achieving an accuracy of 66% for a specific configuration of system parameters.
arXiv Detail & Related papers (2025-02-10T09:44:13Z) - Detecting Machine-Generated Texts by Multi-Population Aware Optimization
for Maximum Mean Discrepancy [47.382793714455445]
Machine-generated texts (MGTs) may carry critical risks, such as plagiarism, misleading information, or hallucination issues.
It is challenging to distinguish MGTs and human-written texts because the distributional discrepancy between them is often very subtle.
We propose a novel textitmulti-population aware optimization method for MMD called MMD-MP.
arXiv Detail & Related papers (2024-02-25T09:44:56Z) - Comparing Hallucination Detection Metrics for Multilingual Generation [62.97224994631494]
This paper assesses how well various factual hallucination detection metrics identify hallucinations in generated biographical summaries across languages.
We compare how well automatic metrics correlate to each other and whether they agree with human judgments of factuality.
Our analysis reveals that while the lexical metrics are ineffective, NLI-based metrics perform well, correlating with human annotations in many settings and often outperforming supervised models.
arXiv Detail & Related papers (2024-02-16T08:10:34Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - Detecting and Preventing Hallucinations in Large Vision Language Models [4.7264116948935975]
M-HalDetect is the first multi-modal hallucination detection dataset for detailed image descriptions.
We train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling.
We find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively.
arXiv Detail & Related papers (2023-08-11T21:35:20Z) - Partial identification of kernel based two sample tests with mismeasured
data [5.076419064097733]
Two-sample tests such as the Maximum Mean Discrepancy (MMD) are often used to detect differences between two distributions in machine learning applications.
We study the estimation of the MMD under $epsilon$-contamination, where a possibly non-random $epsilon$ proportion of one distribution is erroneously grouped with the other.
We propose a method to estimate these bounds, and show that it gives estimates that converge to the sharpest possible bounds on the MMD as sample size increases.
arXiv Detail & Related papers (2023-08-07T13:21:58Z) - Maximum Mean Discrepancy Test is Aware of Adversarial Attacks [122.51040127438324]
The maximum mean discrepancy (MMD) test could in principle detect any distributional discrepancy between two datasets.
It has been shown that the MMD test is unaware of adversarial attacks.
arXiv Detail & Related papers (2020-10-22T03:42:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.