ViTA-PAR: Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition
- URL: http://arxiv.org/abs/2506.01411v1
- Date: Mon, 02 Jun 2025 08:07:06 GMT
- Title: ViTA-PAR: Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition
- Authors: Minjeong Park, Hongbeen Park, Jinkyu Kim,
- Abstract summary: Pedestrian Attribute Recognition (PAR) aims to identify detailed attributes of an individual, such as clothing, accessories, and gender.<n>ViTA-PAR is validated on four PAR benchmarks, achieving competitive performance with efficient inference.
- Score: 8.982938200941092
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Pedestrian Attribute Recognition (PAR) task aims to identify various detailed attributes of an individual, such as clothing, accessories, and gender. To enhance PAR performance, a model must capture features ranging from coarse-grained global attributes (e.g., for identifying gender) to fine-grained local details (e.g., for recognizing accessories) that may appear in diverse regions. Recent research suggests that body part representation can enhance the model's robustness and accuracy, but these methods are often restricted to attribute classes within fixed horizontal regions, leading to degraded performance when attributes appear in varying or unexpected body locations. In this paper, we propose Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition, dubbed as ViTA-PAR, to enhance attribute recognition through specialized multimodal prompting and vision-language alignment. We introduce visual attribute prompts that capture global-to-local semantics, enabling diverse attribute representations. To enrich textual embeddings, we design a learnable prompt template, termed person and attribute context prompting, to learn person and attributes context. Finally, we align visual and textual attribute features for effective fusion. ViTA-PAR is validated on four PAR benchmarks, achieving competitive performance with efficient inference. We release our code and model at https://github.com/mlnjeongpark/ViTA-PAR.
Related papers
- FOCUS: Fine-grained Optimization with Semantic Guided Understanding for Pedestrian Attributes Recognition [40.85042685914472]
Pedestrian attribute recognition is a fundamental perception task in intelligent transportation and security.<n>To tackle this fine-grained task, most existing methods focus on extracting regional features to enrich attribute information.<n>We propose the textbfFine-grained textbfOptimization with semantitextbfC gtextbfUided undertextbfStanding (FOCUS) approach for PAR.
arXiv Detail & Related papers (2025-06-28T10:38:54Z) - LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification [63.07563443280147]
We propose a novel framework named LATex for AG-ReID.<n>It adopts prompt-tuning strategies to leverage attribute-based text knowledge.<n>Our framework can fully leverage attribute-based text knowledge to improve the AG-ReID.
arXiv Detail & Related papers (2025-03-31T04:47:05Z) - Hybrid Discriminative Attribute-Object Embedding Network for Compositional Zero-Shot Learning [83.10178754323955]
Hybrid Discriminative Attribute-Object Embedding (HDA-OE) network is proposed to solve the problem of complex interactions between attributes and object visual representations.<n>To increase the variability of training data, HDA-OE introduces an attribute-driven data synthesis (ADDS) module.<n>To further improve the discriminative ability of the model, HDA-OE introduces the subclass-driven discriminative embedding (SDDE) module.<n>The proposed model has been evaluated on three benchmark datasets, and the results verify its effectiveness and reliability.
arXiv Detail & Related papers (2024-11-28T09:50:25Z) - ArtVLM: Attribute Recognition Through Vision-Based Prefix Language Modeling [32.55352435358949]
We propose a sentence generation-based retrieval formulation for attribute recognition.
For each attribute to be recognized on an image, we measure the visual-conditioned probability of generating a short sentence.
We demonstrate through experiments that generative retrieval consistently outperforms contrastive retrieval on two visual reasoning datasets.
arXiv Detail & Related papers (2024-08-07T21:44:29Z) - Attribute-Aware Implicit Modality Alignment for Text Attribute Person Search [19.610244285078483]
We propose an Attribute-Aware Implicit Modality Alignment (AIMA) framework to learn the correspondence of local representations between textual attributes and images.
We show that our proposed method significantly surpasses the current state-of-the-art methods.
arXiv Detail & Related papers (2024-06-06T03:34:42Z) - Spatio-Temporal Side Tuning Pre-trained Foundation Models for Video-based Pedestrian Attribute Recognition [58.79807861739438]
Existing pedestrian recognition (PAR) algorithms are mainly developed based on a static image.
We propose to understand human attributes using video frames that can fully use temporal information.
arXiv Detail & Related papers (2024-04-27T14:43:32Z) - Multi-modal Attribute Prompting for Vision-Language Models [40.39559705414497]
Pre-trained Vision-Language Models (VLMs) exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios.
Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics.
We propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment.
arXiv Detail & Related papers (2024-03-01T01:28:10Z) - TransFA: Transformer-based Representation for Face Attribute Evaluation [87.09529826340304]
We propose a novel textbftransformer-based representation for textbfattribute evaluation method (textbfTransFA)
The proposed TransFA achieves superior performances compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-07-12T10:58:06Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
We argue that an image representation with integrated attribute localization ability would be beneficial for any-shot, i.e. zero-shot and few-shot, image classification tasks.
We propose a novel representation learning framework that jointly learns global and local features using only class-level attributes.
arXiv Detail & Related papers (2022-04-04T02:25:40Z) - Attribute Prototype Network for Zero-Shot Learning [113.50220968583353]
We propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features.
Our model points to the visual evidence of the attributes in an image, confirming the improved attribute localization ability of our image representation.
arXiv Detail & Related papers (2020-08-19T06:46:35Z) - ViTAA: Visual-Textual Attributes Alignment in Person Search by Natural
Language [36.319953919737245]
Person search by natural language aims at retrieving a specific person in a large-scale image pool that matches the given textual descriptions.
We propose an attribute-aligning perspective that allows grounding specific attribute phrases to the corresponding visual regions.
We achieve success as well as the performance boosting by a robust feature learning.
arXiv Detail & Related papers (2020-05-15T02:22:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.