Agentic Episodic Control
- URL: http://arxiv.org/abs/2506.01442v1
- Date: Mon, 02 Jun 2025 08:57:37 GMT
- Title: Agentic Episodic Control
- Authors: Xidong Yang, Wenhao Li, Junjie Sheng, Chuyun Shen, Yun Hua, Xiangfeng Wang,
- Abstract summary: Reinforcement learning (RL) has driven breakthroughs in AI, from game-play to scientific discovery and AI alignment.<n>Recent advances suggest that large language models, with their rich world knowledge and reasoning capabilities, could complement RL by enabling semantic state modeling and task-agnostic planning.<n>We propose the Agentic Episodic Control (AEC), a novel architecture that integrates RL with large language models to enhance decision-making.
- Score: 16.94652073521156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has driven breakthroughs in AI, from game-play to scientific discovery and AI alignment. However, its broader applicability remains limited by challenges such as low data efficiency and poor generalizability. Recent advances suggest that large language models, with their rich world knowledge and reasoning capabilities, could complement RL by enabling semantic state modeling and task-agnostic planning. In this work, we propose the Agentic Episodic Control (AEC), a novel architecture that integrates RL with LLMs to enhance decision-making. The AEC can leverage a large language model (LLM) to map the observations into language-grounded embeddings, which further can be stored in an episodic memory for rapid retrieval of high-value experiences. Simultaneously, a World-Graph working memory module is utilized to capture structured environmental dynamics in order to enhance relational reasoning. Furthermore, a lightweight critical state detector dynamically arbitrates between the episodic memory recall and the world-model-guided exploration. On the whole, by combining the trial-and-error learning scheme with LLM-derived semantic priors, the proposed AEC can improve both data efficiency and generalizability in reinforcement learning. In experiments on BabyAI-Text benchmark tasks, AEC demonstrates substantial improvements over existing baselines, especially on complex and generalization tasks like FindObj, where it outperforms the best baseline by up to 76%. The proposed AEC framework bridges the strengths of numeric reinforcement learning and symbolic reasoning, which provides a pathway toward more adaptable and sample-efficient agents.
Related papers
- Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search [48.348209577994865]
Large Language Models (LLMs) are increasingly capable but often require significant guidance or extensive interaction history to perform effectively in complex, interactive environments.<n>We introduce a novel LLM agent framework that enhances planning capabilities through in-context learning.<n>Our agent learns to extract task-critical atomic facts'' from its interaction trajectories.
arXiv Detail & Related papers (2025-06-10T18:36:31Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions [35.77671870515212]
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands.<n>This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and dataset Distillation (DD)
arXiv Detail & Related papers (2025-04-20T23:50:23Z) - Reasoning Under 1 Billion: Memory-Augmented Reinforcement Learning for Large Language Models [53.4530106173067]
Large language models (LLMs) with reinforcement learning (RL) have shown promising improvements in complex reasoning tasks.<n>RL remains challenging for tiny LLMs with 1 billion parameters or fewer because they lack the necessary pretraining strength to explore effectively.<n>This work introduces a novel intrinsic motivation approach that leverages episodic memory to address this challenge.
arXiv Detail & Related papers (2025-04-03T04:46:17Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.<n>Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents [18.369668601864575]
AriGraph is a memory graph that integrates semantic and episodic memories while exploring the environment.<n>We demonstrate that our Ariadne LLM agent effectively handles complex tasks within interactive text game environments difficult even for human players.
arXiv Detail & Related papers (2024-07-05T09:06:47Z) - Large Language Model Enhanced Knowledge Representation Learning: A Survey [15.602891714371342]
Knowledge Representation Learning (KRL) is crucial for enabling applications of symbolic knowledge from Knowledge Graphs to downstream tasks.<n>This work provides a broad overview of downstream tasks while simultaneously identifying emerging research directions in these evolving domains.
arXiv Detail & Related papers (2024-07-01T03:37:35Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - PEAR: Primitive Enabled Adaptive Relabeling for Boosting Hierarchical Reinforcement Learning [25.84621883831624]
Hierarchical reinforcement learning (HRL) has the potential to solve complex long horizon tasks using temporal abstraction and increased exploration.<n>We present primitive enabled adaptive relabeling (PEAR)<n>We first perform adaptive relabeling on a few expert demonstrations to generate efficient subgoal supervision.<n>We then jointly optimize HRL agents by employing reinforcement learning (RL) and imitation learning (IL)
arXiv Detail & Related papers (2023-06-10T09:41:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.