論文の概要: Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition
- arxiv url: http://arxiv.org/abs/2506.01532v4
- Date: Fri, 06 Jun 2025 14:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.045997
- Title: Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition
- Title(参考訳): 離散カテゴリを超えてバランスをとる - 公正な顔認識のための連続的なデモグラフィックラベル
- Authors: Pedro C. Neto, Naser Damer, Jaime S. Cardoso, Ana F. Sequeira,
- Abstract要約: 我々は,アイデンティティごとの離散値ではなく,連続変数としての民族ラベルの使用を改訂することを提案する。
民族ごとの同一のアイデンティティ数を持つことは、バランスの取れたデータセットを表すものではないことを示す。
65以上の異なるモデルをトレーニングし、オリジナルのデータセットの20以上のサブセットを作成しました。
- 参考スコア(独自算出の注目度): 7.989700021807903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bias has been a constant in face recognition models. Over the years, researchers have looked at it from both the model and the data point of view. However, their approach to mitigation of data bias was limited and lacked insight on the real nature of the problem. Here, in this document, we propose to revise our use of ethnicity labels as a continuous variable instead of a discrete value per identity. We validate our formulation both experimentally and theoretically, showcasing that not all identities from one ethnicity contribute equally to the balance of the dataset; thus, having the same number of identities per ethnicity does not represent a balanced dataset. We further show that models trained on datasets balanced in the continuous space consistently outperform models trained on data balanced in the discrete space. We trained more than 65 different models, and created more than 20 subsets of the original datasets.
- Abstract(参考訳): バイアスは顔認識モデルにおいて一定である。
長年にわたって、研究者はモデルとデータの観点からそれを調べてきた。
しかし、データバイアスの緩和に対する彼らのアプローチは限定的であり、問題の実際の性質についての洞察が欠如していた。
本稿では,アイデンティティごとの離散値ではなく,連続変数としての民族ラベルの使用を改訂することを提案する。
我々は、実験的にも理論的にも、ある民族のすべてのアイデンティティがデータセットのバランスに等しく寄与するわけではないことを示す。
さらに、連続空間でバランスのとれたデータセットでトレーニングされたモデルは、離散空間でバランスのとれたデータでトレーニングされたモデルよりも一貫して優れていることを示す。
65以上の異なるモデルをトレーニングし、オリジナルのデータセットの20以上のサブセットを作成しました。
関連論文リスト
- Biased Heritage: How Datasets Shape Models in Facial Expression Recognition [13.77824359359967]
画像に基づく表情認識システムにおいて,データセットから訓練されたモデルへのバイアス伝搬について検討する。
本稿では,複数の階層群を有する複数クラス問題に特化して設計された新しいバイアス指標を提案する。
その結果,FERデータセットの一般的な人口収支よりも,感情特異的な人口動態パターンの防止が優先されるべきであることが示唆された。
論文 参考訳(メタデータ) (2025-03-05T12:25:22Z) - The Impact of Balancing Real and Synthetic Data on Accuracy and Fairness in Face Recognition [10.849598219674132]
人口統計学的にバランスのとれた認証データと合成データとが、顔認識モデルの精度と公正性に与える影響について検討した。
本研究は,<i>I</i> と<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>I</i>,<i>E</i>,<i>,</i>,<i>,<i>,<i>I</i>,</i>,<i>,<i>,<i>,<i>,
論文 参考訳(メタデータ) (2024-09-04T16:50:48Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Toward responsible face datasets: modeling the distribution of a
disentangled latent space for sampling face images from demographic groups [0.0]
近年、一部の現代の顔認識システムが特定の人口集団を識別できることが明らかにされている。
そこで我々は,StyleGANラテント空間の非交叉射影をモデル化し,サンプリングするための簡単な手法を提案する。
実験の結果、人口集団の組み合わせを効果的に合成できることが示され、同一性は元のトレーニングデータセットと異なることがわかった。
論文 参考訳(メタデータ) (2023-09-15T14:42:04Z) - Zero-shot racially balanced dataset generation using an existing biased
StyleGAN2 [5.463417677777276]
本稿では, 偏りのある生成モデルであるStyleGAN2を用いて, 人口統計学的に多様な合成個体の画像を作成する手法を提案する。
1レースあたり50,000のIDを含むバランスの取れたデータセットで顔認識モデルをトレーニングすることで、パフォーマンスを改善し、実際のデータセットでトレーニングされたモデルに存在した可能性のあるバイアスを最小限にすることができる。
論文 参考訳(メタデータ) (2023-05-12T18:07:10Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z) - Investigating Bias in Deep Face Analysis: The KANFace Dataset and
Empirical Study [67.3961439193994]
現在までに最も包括的で大規模な顔画像とビデオのデータセットを導入している。
データは、アイデンティティ、正確な年齢、性別、親族関係の点で手動で注釈付けされる。
提案したベンチマークでネットワーク埋め込みをデバイアス化する手法を導入し,テストした。
論文 参考訳(メタデータ) (2020-05-15T00:14:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。