LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation
- URL: http://arxiv.org/abs/2506.01538v2
- Date: Tue, 03 Jun 2025 07:53:14 GMT
- Title: LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation
- Authors: Guobin Zhu, Rui Zhou, Wenkang Ji, Shiyu Zhao,
- Abstract summary: Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored.<n>This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design.
- Score: 12.098817831819078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Multi-Agent Reinforcement Learning (MARL) is effective for complex multi-robot tasks, it suffers from low sample efficiency and requires iterative manual reward tuning. Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored. This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design. LAMARL consists of two modules: the first module leverages LLMs to fully automate the generation of prior policy and reward functions. The second module is MARL, which uses the generated functions to guide robot policy training effectively. On a shape assembly benchmark, both simulation and real-world experiments demonstrate the unique advantages of LAMARL. Ablation studies show that the prior policy improves sample efficiency by an average of 185.9% and enhances task completion, while structured prompts based on Chain-of-Thought (CoT) and basic APIs improve LLM output success rates by 28.5%-67.5%. Videos and code are available at https://windylab.github.io/LAMARL/
Related papers
- LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoD is a framework designed to enable the efficient training of small-scale Multimodal Language Models.
We optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts architecture into the language model.
We also propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration.
arXiv Detail & Related papers (2024-08-28T15:52:23Z) - The Fellowship of the LLMs: Multi-Model Workflows for Synthetic Preference Optimization Dataset Generation [4.524402497958597]
This paper presents a novel methodology for generating synthetic Preference Optimization (PO) datasets using multi-models.<n>We evaluate the effectiveness and potential of these in automating and enhancing the dataset generation process.
arXiv Detail & Related papers (2024-08-16T12:01:55Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - A Framework to Implement 1+N Multi-task Fine-tuning Pattern in LLMs
Using the CGC-LORA Algorithm [7.521690071464451]
We propose a unified framework that implements a 1 + N mutli-task fine-tuning pattern in large language models (LLMs)
Our work aims to take an advantage of both MTL (i.e., CGC) and PEFT (i.e., LoRA) scheme.
arXiv Detail & Related papers (2024-01-22T07:58:31Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.