Adaptive Destruction Processes for Diffusion Samplers
- URL: http://arxiv.org/abs/2506.01541v1
- Date: Mon, 02 Jun 2025 11:07:27 GMT
- Title: Adaptive Destruction Processes for Diffusion Samplers
- Authors: Timofei Gritsaev, Nikita Morozov, Kirill Tamogashev, Daniil Tiapkin, Sergey Samsonov, Alexey Naumov, Dmitry Vetrov, Nikolay Malkin,
- Abstract summary: This paper explores the challenges and benefits of a trainable destruction process in diffusion samplers.<n>We show that, when the number of steps is limited, training both generation and destruction processes results in faster convergence and improved sampling quality.
- Score: 12.446080077998834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the challenges and benefits of a trainable destruction process in diffusion samplers -- diffusion-based generative models trained to sample an unnormalised density without access to data samples. Contrary to the majority of work that views diffusion samplers as approximations to an underlying continuous-time model, we view diffusion models as discrete-time policies trained to produce samples in very few generation steps. We propose to trade some of the elegance of the underlying theory for flexibility in the definition of the generative and destruction policies. In particular, we decouple the generation and destruction variances, enabling both transition kernels to be learned as unconstrained Gaussian densities. We show that, when the number of steps is limited, training both generation and destruction processes results in faster convergence and improved sampling quality on various benchmarks. Through a robust ablation study, we investigate the design choices necessary to facilitate stable training. Finally, we show the scalability of our approach through experiments on GAN latent space sampling for conditional image generation.
Related papers
- Generative Uncertainty in Diffusion Models [17.06573336804057]
We propose a Bayesian framework for estimating generative uncertainty of synthetic samples.<n>We show that the proposed generative uncertainty effectively identifies poor-quality samples and significantly outperforms existing uncertainty-based methods.
arXiv Detail & Related papers (2025-02-28T10:56:39Z) - Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
Speculative sampling is a popular technique for accelerating inference in Large Language Models.<n>We extend speculative sampling to diffusion models, which generate samples via continuous, vector-valued Markov chains.<n>We propose various drafting strategies, including a simple and effective approach that does not require training a draft model.
arXiv Detail & Related papers (2025-01-09T16:50:16Z) - Constrained Diffusion with Trust Sampling [11.354281911272864]
We rethink training-free loss-guided diffusion from an optimization perspective.
Trust sampling effectively balances following the unconditional diffusion model and adhering to the loss guidance.
We demonstrate the efficacy of our method through extensive experiments on complex tasks, and in drastically different domains of images and 3D motion generation.
arXiv Detail & Related papers (2024-11-17T01:34:57Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.<n>We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.<n>Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time [49.598085130313514]
We propose discrete non-Markov diffusion models (DNDM), which naturally induce the predetermined transition time set.<n>This enables a training-free sampling algorithm that significantly reduces the number of function evaluations.<n>We study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
Conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training.
We propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework.
arXiv Detail & Related papers (2023-11-28T02:08:06Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.