Class Incremental Learning for Algorithm Selection
- URL: http://arxiv.org/abs/2506.01545v1
- Date: Mon, 02 Jun 2025 11:18:07 GMT
- Title: Class Incremental Learning for Algorithm Selection
- Authors: Mate Botond Nemeth, Emma Hart, Kevin Sim, Quentin Renau,
- Abstract summary: We study the relevance of algorithm-selection in optimisation scenarios.<n>We benchmark 8 continual learning methods with respect to their ability to withstand catastrophic forgetting.<n>We find that rehearsal-based methods significantly outperform other CIL methods.
- Score: 0.16874375111244325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithm selection is commonly used to predict the best solver from a portfolio per per-instance. In many real scenarios, instances arrive in a stream: new instances become available over time, while the number of class labels can also grow as new data distributions arrive downstream. As a result, the classification model needs to be periodically updated to reflect additional solvers without catastrophic forgetting of past data. In machine-learning (ML), this is referred to as Class Incremental Learning (CIL). While commonly addressed in ML settings, its relevance to algorithm-selection in optimisation has not been previously studied. Using a bin-packing dataset, we benchmark 8 continual learning methods with respect to their ability to withstand catastrophic forgetting. We find that rehearsal-based methods significantly outperform other CIL methods. While there is evidence of forgetting, the loss is small at around 7%. Hence, these methods appear to be a viable approach to continual learning in streaming optimisation scenarios.
Related papers
- Meta-learning Representations for Learning from Multiple Annotators [40.886894995806955]
We propose a meta-learning method for learning from multiple noisy annotators.<n>The proposed method embeds each example in tasks to a latent space by using a neural network.<n>We show the effectiveness of our method with real-world datasets with synthetic noise and real-world crowdsourcing datasets.
arXiv Detail & Related papers (2025-06-12T00:58:37Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
We propose a simple and efficient continual learning method for on-device environmental sound classification.
Our method selects the historical data for the training by measuring the per-sample classification uncertainty.
arXiv Detail & Related papers (2022-07-15T12:13:04Z) - Lightweight Conditional Model Extrapolation for Streaming Data under
Class-Prior Shift [27.806085423595334]
We introduce LIMES, a new method for learning with non-stationary streaming data.
We learn a single set of model parameters from which a specific classifier for any specific data distribution is derived.
Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches.
arXiv Detail & Related papers (2022-06-10T15:19:52Z) - vCLIMB: A Novel Video Class Incremental Learning Benchmark [53.90485760679411]
We introduce vCLIMB, a novel video continual learning benchmark.
vCLIMB is a standardized test-bed to analyze catastrophic forgetting of deep models in video continual learning.
We propose a temporal consistency regularization that can be applied on top of memory-based continual learning methods.
arXiv Detail & Related papers (2022-01-23T22:14:17Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations [9.530976792843495]
Class Incremental Learning (CIL) tends to learn new concepts perfectly, but not at the expense of performance and accuracy for old data.
ClaRe is an efficient solution for CIL by remembering the representations of learned classes in each increment.
ClaRe has a better generalization than prior methods thanks to producing diverse instances from the distribution of previously learned classes.
arXiv Detail & Related papers (2021-03-29T10:39:42Z) - Fase-AL -- Adaptation of Fast Adaptive Stacking of Ensembles for
Supporting Active Learning [0.0]
This work presents the FASE-AL algorithm which induces classification models with non-labeled instances using Active Learning.
The algorithm achieves promising results in terms of the percentage of correctly classified instances.
arXiv Detail & Related papers (2020-01-30T17:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.