Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration
- URL: http://arxiv.org/abs/2506.01604v1
- Date: Mon, 02 Jun 2025 12:43:08 GMT
- Title: Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration
- Authors: Sophia DiCuffa, Amanda Zambrana, Priyanshi Yadav, Sashidhar Madiraju, Khushi Suman, Eman Abdullah AlOmar,
- Abstract summary: This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation.<n>We analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI.
- Score: 3.1861081539404137
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The growing integration of AI tools in software development, particularly Large Language Models (LLMs) such as ChatGPT, has revolutionized how developers approach coding tasks. However, achieving high-quality code often requires iterative interactions, which can be time-consuming and inefficient. This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation. Using the DevGPT dataset, we analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI. Our findings highlight patterns such as ''Context and Instruction'' and ''Recipe'' as particularly effective in achieving high-quality outputs with minimal iterations. The study emphasizes the potential for prompt engineering to streamline developer-AI collaboration, providing practical insights into crafting prompts that balance precision, efficiency, and clarity.
Related papers
- ProRefine: Inference-Time Prompt Refinement with Textual Feedback [8.261243439474322]
AgenticRefine, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications.<n>We introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback.<n>ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points.
arXiv Detail & Related papers (2025-06-05T17:52:30Z) - Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency [0.0]
We study how different programming activities compositions and training paradigms influence code generation effectiveness.<n>Our findings provide valuable insights for organizations seeking robust AI-driven coding solutions.
arXiv Detail & Related papers (2025-05-04T14:44:27Z) - The AI Co-Ethnographer: How Far Can Automation Take Qualitative Research? [51.40252017262535]
The AI Co-Ethnographer (AICoE) is a novel end-to-end pipeline developed for qualitative research.<n>AICoE organizes the entire process, encompassing open coding, code consolidation, code application, and even pattern discovery.
arXiv Detail & Related papers (2025-04-21T21:31:28Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
We propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types.<n>Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development.
arXiv Detail & Related papers (2025-01-15T12:53:49Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics.
The paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration.
arXiv Detail & Related papers (2023-05-19T17:25:54Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.