ProRefine: Inference-Time Prompt Refinement with Textual Feedback
- URL: http://arxiv.org/abs/2506.05305v2
- Date: Tue, 05 Aug 2025 17:56:29 GMT
- Title: ProRefine: Inference-Time Prompt Refinement with Textual Feedback
- Authors: Deepak Pandita, Tharindu Cyril Weerasooriya, Ankit Parag Shah, Isabelle Diana May-Xin Ng, Christopher M. Homan, Wei Wei,
- Abstract summary: AgenticRefine, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications.<n>We introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback.<n>ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points.
- Score: 8.261243439474322
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across nearly all fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
Related papers
- Introspection of Thought Helps AI Agents [19.04968632268433]
Large Language Models (LLMs) and Multimodal-LLMs (MLLMs) play the most critical role and determine the initial ability and limitations of AI Agents.<n>We propose a novel AI Agent Reasoning Framework with Introspection of Thought (INoT) by designing a new LLM-Read code in prompt.<n>The effectiveness of INoT is verified, with an average improvement of 7.95% in performance, exceeding the baselines.
arXiv Detail & Related papers (2025-07-11T15:03:17Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation.<n>We analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI.
arXiv Detail & Related papers (2025-06-02T12:43:08Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
Large Language Model (LLM) agents represent a promising shift in human-AI interaction.<n>We highlight a critical usability gap in high-demand, mass-market applications.
arXiv Detail & Related papers (2025-05-23T11:40:58Z) - On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows [71.92083784393418]
Agentic AI (systems that autonomously plan and act) are becoming widespread, yet their task success rate on complex tasks remains low.<n>Inference-time alignment relies on three components: sampling, evaluation, and feedback.<n>We introduce Iterative Agent Decoding (IAD), a procedure that repeatedly inserts feedback extracted from different forms of critiques.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.<n>Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.<n>We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent that, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in tasksets.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops [3.729242965449096]
This paper introduces a framework for autonomously optimizing Agentic AI solutions across industries.<n>The framework achieves optimal performance without human input by autonomously generating and testing hypotheses.<n>Case studies show significant improvements in output quality, relevance, and actionability.
arXiv Detail & Related papers (2024-12-22T20:08:04Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.<n>First, we collect real-world human activities to generate proactive task predictions.<n>These predictions are labeled by human annotators as either accepted or rejected.<n>The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention.<n>It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning.<n>In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.