MLA-Trust: Benchmarking Trustworthiness of Multimodal LLM Agents in GUI Environments
- URL: http://arxiv.org/abs/2506.01616v1
- Date: Mon, 02 Jun 2025 12:56:27 GMT
- Title: MLA-Trust: Benchmarking Trustworthiness of Multimodal LLM Agents in GUI Environments
- Authors: Xiao Yang, Jiawei Chen, Jun Luo, Zhengwei Fang, Yinpeng Dong, Hang Su, Jun Zhu,
- Abstract summary: We introduce MLA-Trust, the first comprehensive and unified framework that evaluates the MLA trustworthiness across four dimensions: truthfulness, controllability, safety and privacy.<n>We utilize websites and mobile applications as realistic testbeds, designing 34 high-risk interactive tasks and curating rich evaluation datasets.
- Score: 40.15090158534087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of multimodal LLM-based agents (MLAs) has transformed interaction paradigms by seamlessly integrating vision, language, action and dynamic environments, enabling unprecedented autonomous capabilities across GUI applications ranging from web automation to mobile systems. However, MLAs introduce critical trustworthiness challenges that extend far beyond traditional language models' limitations, as they can directly modify digital states and trigger irreversible real-world consequences. Existing benchmarks inadequately tackle these unique challenges posed by MLAs' actionable outputs, long-horizon uncertainty and multimodal attack vectors. In this paper, we introduce MLA-Trust, the first comprehensive and unified framework that evaluates the MLA trustworthiness across four principled dimensions: truthfulness, controllability, safety and privacy. We utilize websites and mobile applications as realistic testbeds, designing 34 high-risk interactive tasks and curating rich evaluation datasets. Large-scale experiments involving 13 state-of-the-art agents reveal previously unexplored trustworthiness vulnerabilities unique to multimodal interactive scenarios. For instance, proprietary and open-source GUI-interacting MLAs pose more severe trustworthiness risks than static MLLMs, particularly in high-stakes domains; the transition from static MLLMs into interactive MLAs considerably compromises trustworthiness, enabling harmful content generation in multi-step interactions that standalone MLLMs would typically prevent; multi-step execution, while enhancing the adaptability of MLAs, involves latent nonlinear risk accumulation across successive interactions, circumventing existing safeguards and resulting in unpredictable derived risks. Moreover, we present an extensible toolbox to facilitate continuous evaluation of MLA trustworthiness across diverse interactive environments.
Related papers
- MLLM-CL: Continual Learning for Multimodal Large Language Models [62.90736445575181]
We introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning.<n>Our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods.
arXiv Detail & Related papers (2025-06-05T17:58:13Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
We propose a unified multimodal universal jailbreak attack framework.<n>We evaluate the undesirable context generation of MLLMs like LLaVA, Yi-VL, MiniGPT4, MiniGPT-v2, and InstructBLIP.<n>This study underscores the urgent need for robust safety measures in MLLMs.
arXiv Detail & Related papers (2025-06-02T04:33:56Z) - A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network [53.37983409425452]
Large Language Models (LLMs) have achieved remarkable success across a wide range of applications.<n>Recently, collaborative frameworks such as the Multi-LLM Network (MultiLLMN) have been introduced.<n>We propose a novel Trusted MultiLLMN framework driven by a weighted Byzantine Fault Tolerance (WBFT) blockchain consensus mechanism.
arXiv Detail & Related papers (2025-05-08T10:04:41Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.<n>Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.<n>Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.