Social Cooperation in Conversational AI Agents
- URL: http://arxiv.org/abs/2506.01624v1
- Date: Mon, 02 Jun 2025 13:02:36 GMT
- Title: Social Cooperation in Conversational AI Agents
- Authors: Mustafa Mert Çelikok, Saptarashmi Bandyopadhyay, Robert Loftin,
- Abstract summary: We argue that these challenges can be overcome by explicitly modeling humans' social intelligence.<n>By mathematically modeling the strategies humans use to communicate and reason about one another over long periods of time, we may be able to derive new game theoretic objectives.
- Score: 17.015143707851358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of AI agents based on large, open-domain language models (LLMs) has paved the way for the development of general-purpose AI assistants that can support human in tasks such as writing, coding, graphic design, and scientific research. A major challenge with such agents is that, by necessity, they are trained by observing relatively short-term interactions with humans. Such models can fail to generalize to long-term interactions, for example, interactions where a user has repeatedly corrected mistakes on the part of the agent. In this work, we argue that these challenges can be overcome by explicitly modeling humans' social intelligence, that is, their ability to build and maintain long-term relationships with other agents whose behavior cannot always be predicted. By mathematically modeling the strategies humans use to communicate and reason about one another over long periods of time, we may be able to derive new game theoretic objectives against which LLMs and future AI agents may be optimized.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
arXiv Detail & Related papers (2025-06-22T12:59:12Z) - Modeling AI-Human Collaboration as a Multi-Agent Adaptation [0.0]
We develop an agent-based simulation to formalize AI-human collaboration as a function of a task.<n>We show that in modular tasks, AI often substitutes for humans - delivering higher payoffs unless human expertise is very high.<n>We also show that even "hallucinatory" AI - lacking memory or structure - can improve outcomes when augmenting low-capability humans by helping escape local optima.
arXiv Detail & Related papers (2025-04-29T16:19:53Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.<n>This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role.<n>Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities.<n>In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task.
arXiv Detail & Related papers (2024-12-02T21:56:46Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
Large language models (LLMs) should be able to leverage their large breadth of understanding to interpret natural language commands.
However, these models suffer from hallucinations, which may cause safety issues or deviations from the task.
In this research, multiple collaborative AI systems were tested against a single independent AI agent to determine whether the success in other domains would translate into improved human-robot interaction performance.
arXiv Detail & Related papers (2024-11-23T02:47:12Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
We introduce a significantly general version of human-aware AI interaction scheme, called generalized human-aware interaction (GHAI)
We will see how this new framework allows us to capture the various works done in the space of human-AI interaction and identify the fundamental behavioral patterns supported by these works.
arXiv Detail & Related papers (2022-02-18T22:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.