Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
- URL: http://arxiv.org/abs/2506.18019v3
- Date: Fri, 04 Jul 2025 14:29:40 GMT
- Title: Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
- Authors: Yuanchen Bei, Weizhi Zhang, Siwen Wang, Weizhi Chen, Sheng Zhou, Hao Chen, Yong Li, Jiajun Bu, Shirui Pan, Yizhou Yu, Irwin King, Fakhri Karray, Philip S. Yu,
- Abstract summary: Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
- Score: 117.49715661395294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents have experienced a paradigm shift, from early dominance by reinforcement learning (RL) to the rise of agents powered by large language models (LLMs), and now further advancing towards a synergistic fusion of RL and LLM capabilities. This progression has endowed AI agents with increasingly strong abilities. Despite these advances, to accomplish complex real-world tasks, agents are required to plan and execute effectively, maintain reliable memory, and coordinate smoothly with other agents. Achieving these capabilities involves contending with ever-present intricate information, operations, and interactions. In light of this challenge, data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms that agents can more effectively understand and process. In this context, graphs, with their natural advantage in organizing, managing, and harnessing intricate data relationships, present a powerful data paradigm for structurization to support the capabilities demanded by advanced AI agents. To this end, this survey presents a first systematic review of how graphs can empower AI agents. Specifically, we explore the integration of graph techniques with core agent functionalities, highlight notable applications, and identify prospective avenues for future research. By comprehensively surveying this burgeoning intersection, we hope to inspire the development of next-generation AI agents equipped to tackle increasingly sophisticated challenges with graphs. Related resources are collected and continuously updated for the community in the Github link.
Related papers
- Graph-Augmented Large Language Model Agents: Current Progress and Future Prospects [53.24831948221361]
Graph-augmented LLM Agents (GLA) enhance structure, continuity, and coordination in complex agent systems.<n>This paper offers a timely and comprehensive overview of recent advances and highlights key directions for future work.<n>We hope this paper can serve as a roadmap for future research on GLA and foster a deeper understanding of the role of graphs in GLA agent systems.
arXiv Detail & Related papers (2025-07-29T00:27:12Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - A representational framework for learning and encoding structurally enriched trajectories in complex agent environments [1.904851064759821]
The ability of artificial intelligence agents to make optimal decisions and generalise them to different domains and tasks is compromised in complex scenarios.<n>One way to address this issue has focused on learning efficient representations of the world and on how the actions of agents affect them, such as disentangled representations that exploit symmetries.<n>We propose to enrich the agent's ontology and extend the traditionalisation of trajectories to provide a more nuanced view of task execution.
arXiv Detail & Related papers (2025-03-17T14:04:27Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI [1.4582633500696451]
This paper discusses the integrated application of LangGraph and CrewAI.<n>LangGraph improves the efficiency of information transmission through graph architecture.<n>CrewAI enhances team collaboration capabilities and system performance.
arXiv Detail & Related papers (2024-11-27T11:29:17Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Collaborative Evolving Strategy for Automatic Data-Centric Development [17.962373755266068]
This paper introduces the automatic data-centric development (AD2) task.
It outlines its core challenges, which require domain-experts-like task scheduling and implementation capability.
We propose an autonomous agent equipped with a strategy named Collaborative Knowledge-STudying-Enhanced Evolution by Retrieval.
arXiv Detail & Related papers (2024-07-26T12:16:47Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents [18.369668601864575]
AriGraph is a memory graph that integrates semantic and episodic memories while exploring the environment.<n>We demonstrate that our Ariadne LLM agent effectively handles complex tasks within interactive text game environments difficult even for human players.
arXiv Detail & Related papers (2024-07-05T09:06:47Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Inferring Latent Temporal Sparse Coordination Graph for Multi-Agent Reinforcement Learning [19.386588137176933]
We propose a Latent Temporal Sparse Coordination Graph (LTS-CG) for Multi-Agent Reinforcement Learning (MARL)<n>This graph learning process is further augmented by two innovative characteristics: Predict-Future, which enables agents to foresee upcoming observations, and Infer-Present, ensuring a thorough grasp of the environmental context from limited data.<n>Our demonstrated results on the StarCraft II benchmark underscore LTS-CG's superior performance.
arXiv Detail & Related papers (2024-03-28T09:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.