Engram Memory Encoding and Retrieval: A Neurocomputational Perspective
- URL: http://arxiv.org/abs/2506.01659v1
- Date: Mon, 02 Jun 2025 13:30:39 GMT
- Title: Engram Memory Encoding and Retrieval: A Neurocomputational Perspective
- Authors: Daniel Szelogowski,
- Abstract summary: The engram theory posits that sparse populations of neurons undergo lasting physical and biochemical changes to support long-term memory.<n>This paper synthesizes insights from cellular neuroscience and computational modeling to address key challenges in engram research.<n>It suggests memory efficiency, capacity, and stability emerge from the interaction of plasticity and sparsity constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite substantial research into the biological basis of memory, the precise mechanisms by which experiences are encoded, stored, and retrieved in the brain remain incompletely understood. A growing body of evidence supports the engram theory, which posits that sparse populations of neurons undergo lasting physical and biochemical changes to support long-term memory. Yet, a comprehensive computational framework that integrates biological findings with mechanistic models remains elusive. This work synthesizes insights from cellular neuroscience and computational modeling to address key challenges in engram research: how engram neurons are identified and manipulated; how synaptic plasticity mechanisms contribute to stable memory traces; and how sparsity promotes efficient, interference-resistant representations. Relevant computational approaches -- such as sparse regularization, engram gating, and biologically inspired architectures like Sparse Distributed Memory and spiking neural networks -- are also examined. Together, these findings suggest that memory efficiency, capacity, and stability emerge from the interaction of plasticity and sparsity constraints. By integrating neurobiological and computational perspectives, this paper provides a comprehensive theoretical foundation for engram research and proposes a roadmap for future inquiry into the mechanisms underlying memory, with implications for the diagnosis and treatment of memory-related disorders.
Related papers
- Neural Manifolds and Cognitive Consistency: A New Approach to Memory Consolidation in Artificial Systems [0.0]
We introduce a novel mathematical framework that unifies neural population dynamics, hippocampal sharp wave-ripple (SpWR) generation, and cognitive consistency constraints inspired by Heider's theory.<n>Our model leverages low-dimensional manifold representations to capture structured neural drift and incorporates a balance energy function to enforce coherent synaptic interactions.<n>This work paves the way for scalable neuromorphic architectures that bridge neuroscience and artificial intelligence, offering more robust and adaptive learning mechanisms for future intelligent systems.
arXiv Detail & Related papers (2025-02-25T18:28:25Z) - Biologically Plausible Brain Graph Transformer [29.25619892737193]
State-of-the-art brain graph analysis methods fail to fully encode the small-world architecture of brain graphs.<n>We propose a novel Biologically Plausible Brain Graph Transformer (BioBGT) that encodes the small-world architecture inherent in brain graphs.
arXiv Detail & Related papers (2025-02-13T04:51:18Z) - A Review of Latent Representation Models in Neuroimaging [0.0]
Latent representation models are designed to reduce high-dimensional neuroimaging data to lower-dimensional latent spaces.<n>By modeling these latent spaces, researchers hope to gain insights into the biology and function of the brain.<n>This review discusses how these models are used for clinical applications, like disease diagnosis and progression monitoring, but also for exploring fundamental brain mechanisms.
arXiv Detail & Related papers (2024-12-24T19:12:11Z) - Brain functions emerge as thermal equilibrium states of the connectome [0.3453002745786199]
A fundamental idea in neuroscience is that cognitive functions are shaped and constrained by the brain's structural organization.<n>We show that brain functions, defined as functional networks of a neural system, emerge as thermal equilibrium states of an algebraic quantum system.<n>These equilibrium states, characterized by the Kubo-Martin-Schwinger (KMS) formalism, reveal how individual neurons contribute to functional network formation.
arXiv Detail & Related papers (2024-08-26T12:35:16Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Sequential Memory with Temporal Predictive Coding [6.228559238589584]
We propose a PC-based model for emphsequential memory, called emphtemporal predictive coding (tPC)
We show that our tPC models can memorize and retrieve sequential inputs accurately with a biologically plausible neural implementation.
arXiv Detail & Related papers (2023-05-19T20:03:31Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.