SRPO: Enhancing Multimodal LLM Reasoning via Reflection-Aware Reinforcement Learning
- URL: http://arxiv.org/abs/2506.01713v2
- Date: Sat, 21 Jun 2025 03:17:00 GMT
- Title: SRPO: Enhancing Multimodal LLM Reasoning via Reflection-Aware Reinforcement Learning
- Authors: Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing Xiong, Yi Xin, Yifan Jiang, Chaofan Tao, Yangfan He, Mi Zhang, Shen Yan,
- Abstract summary: Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, but struggle with complex problems requiring explicit self-reflection and self-correction.<n>Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback.<n>We propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning framework.
- Score: 25.02860760920562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, yet still struggle with complex problems requiring explicit self-reflection and self-correction, especially compared to their unimodal text-based counterparts. Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback, as the reasoning ability and knowledge limits of pre-trained models are largely fixed during initial training. To overcome these challenges, we propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning (RL) framework explicitly designed to enhance multimodal LLM reasoning. In the first stage, we construct a high-quality, reflection-focused dataset under the guidance of an advanced MLLM, which generates reflections based on initial responses to help the policy model learn both reasoning and self-reflection. In the second stage, we introduce a novel reward mechanism within the GRPO framework that encourages concise and cognitively meaningful reflection while avoiding redundancy. Extensive experiments across multiple multimodal reasoning benchmarks, including MathVista, MathVision, MathVerse, and MMMU-Pro, using Qwen-2.5-VL-7B and Qwen-2.5-VL-32B demonstrate that SRPO significantly outperforms state-of-the-art models, achieving notable improvements in both reasoning accuracy and reflection quality.
Related papers
- VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
We propose an advanced multimodal reasoning model trained via a novel Progressive Curriculum Reinforcement Learning (PCuRL) framework.<n>PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts.<n>The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity.
arXiv Detail & Related papers (2025-07-30T12:23:21Z) - Learning Deliberately, Acting Intuitively: Unlocking Test-Time Reasoning in Multimodal LLMs [7.501387372794562]
Deliberate-to-Intuitive reasoning framework (D2I) improves understanding and reasoning ability of multimodal language models.<n>Our method sets deliberate reasoning strategies to enhance modality alignment only through the rule-based format reward during training.<n>While evaluating, the reasoning style shifts to intuitive, which removes deliberate reasoning strategies during training and implicitly reflects the model's acquired abilities in the response.
arXiv Detail & Related papers (2025-07-09T16:25:44Z) - Multimodal Mathematical Reasoning with Diverse Solving Perspective [65.07953438724105]
We introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair.<n>We propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization.<n>Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions.
arXiv Detail & Related papers (2025-07-03T17:07:20Z) - Advancing Multi-Step Mathematical Reasoning in Large Language Models through Multi-Layered Self-Reflection with Auto-Prompting [0.0]
We propose a novel approach to enhance multi-step mathematical reasoning in Large Language Models (LLMs)<n>The Multi-Layered Self-Reflection with Auto-Prompting (MAPS) framework integrates techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-Prompting.<n>Experiments show that MAPS significantly outperforms standard CoT and achieves competitive results with reasoning-optimized models.
arXiv Detail & Related papers (2025-06-30T14:18:35Z) - Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
We propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately.<n>We show that Perception-R1 achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
arXiv Detail & Related papers (2025-06-08T16:48:42Z) - Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning [78.17782197231325]
We propose a reasoning-guided reinforcement learning strategy that aligns the extractor's captioning behavior with the reasoning objective.<n> Experiments on multi-modal math and science benchmarks show that the proposed RACRO method achieves state-of-the-art average performance.
arXiv Detail & Related papers (2025-06-05T02:28:07Z) - Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models [45.15161506154318]
Multimodal large language models (MLLMs) present critical challenges.<n> scarcity of high-quality multimodal reasoning datasets.<n>degradation of reasoning capabilities due to the integration of visual processing.<n>Risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes.<n>Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability.
arXiv Detail & Related papers (2025-05-29T04:51:56Z) - Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning [58.86928947970342]
Embodied-R is a framework combining large-scale Vision-Language Models for perception and small-scale Language Models for reasoning.<n>After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models.<n>Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration.
arXiv Detail & Related papers (2025-04-17T06:16:11Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Two Heads Are Better Than One: Dual-Model Verbal Reflection at Inference-Time [17.3254565018168]
Large Language Models (LLMs) often struggle with complex reasoning scenarios.<n>We introduce a contrastive reflection synthesis pipeline that enhances the accuracy and depth of LLM-generated reflections.<n>We propose a dual-model reasoning framework within a verbal reinforcement learning paradigm.
arXiv Detail & Related papers (2025-02-26T15:41:41Z) - Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs)
We propose a self-training framework, R3V, which iteratively enhances the model's Vision-language Reasoning by Reflecting on CoT Rationales.
Our approach supports self-reflection on generated solutions, further boosting performance through test-time computation.
arXiv Detail & Related papers (2024-10-30T14:45:00Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.