Advancing Multi-Step Mathematical Reasoning in Large Language Models through Multi-Layered Self-Reflection with Auto-Prompting
- URL: http://arxiv.org/abs/2506.23888v1
- Date: Mon, 30 Jun 2025 14:18:35 GMT
- Title: Advancing Multi-Step Mathematical Reasoning in Large Language Models through Multi-Layered Self-Reflection with Auto-Prompting
- Authors: André de Souza Loureiro, Jorge Valverde-Rebaza, Julieta Noguez, David Escarcega, Ricardo Marcacini,
- Abstract summary: We propose a novel approach to enhance multi-step mathematical reasoning in Large Language Models (LLMs)<n>The Multi-Layered Self-Reflection with Auto-Prompting (MAPS) framework integrates techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-Prompting.<n>Experiments show that MAPS significantly outperforms standard CoT and achieves competitive results with reasoning-optimized models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly improved their problem-solving capabilities. However, these models still struggle when faced with complex multi-step reasoning tasks. In this paper, we propose the Multi-Layered Self-Reflection with Auto-Prompting (MAPS) framework, a novel approach designed to enhance multi-step mathematical reasoning in LLMs by integrating techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-Prompting. Unlike traditional static prompting methods, MAPS employs an iterative refinement process. Initially, the model generates a solution using CoT prompting. When errors are detected, an adaptive self-reflection mechanism identifies and analyzes them, generating tailored prompts to guide corrections. These dynamically adjusted prompts enable the model to iteratively refine its reasoning. Experiments on four well-established benchmarks across multiple LLMs show that MAPS significantly outperforms standard CoT and achieves competitive results with reasoning-optimized models. In addition, MAPS enables general-purpose LLMs to reach performance levels comparable to specialized reasoning models. While deeper reflection layers improve accuracy, they also increase token usage and costs. To balance this trade-off, MAPS strategically limits reflection depth, ensuring an optimal balance between cost and reasoning performance.
Related papers
- SRPO: Enhancing Multimodal LLM Reasoning via Reflection-Aware Reinforcement Learning [25.02860760920562]
Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, but struggle with complex problems requiring explicit self-reflection and self-correction.<n>Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback.<n>We propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning framework.
arXiv Detail & Related papers (2025-06-02T14:21:44Z) - Misaligning Reasoning with Answers -- A Framework for Assessing LLM CoT Robustness [3.9930400744726273]
We design a novel evaluation framework, MATCHA, to investigate the relationship between answer and reasoning.<n>In domains like education and healthcare, reasoning is key for model trustworthiness.<n>Our results show that LLMs exhibit greater vulnerability to input perturbations for multi-step and commonsense tasks than compared to logical tasks.
arXiv Detail & Related papers (2025-05-23T02:42:16Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design.<n> MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance.
arXiv Detail & Related papers (2025-05-21T00:56:09Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.<n>Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.<n>We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.