Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks
- URL: http://arxiv.org/abs/2506.01767v1
- Date: Mon, 02 Jun 2025 15:15:18 GMT
- Title: Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks
- Authors: Somayeh Sobati-M,
- Abstract summary: This work explores a defense strategy that takes a more adaptive, behavior-aware approach to this problem.<n>Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms.<n>We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems
Related papers
- Overlapping data in network protocols: bridging OS and NIDS reassembly gap [0.22499166814992436]
A Network Intrusion Detection System (NIDS) that tries to reassemble a given flow data has to use the same reassembly policy as the monitored host.<n>We show that 1) OS reassembly policies evolve over time and 2) all the tested NIDSes are still vulnerable to overlap-based evasion and insertion attacks.
arXiv Detail & Related papers (2025-04-30T13:15:50Z) - A Flow is a Stream of Packets: A Stream-Structured Data Approach for DDoS Detection [32.22817720403158]
We propose a new tree-based DDoS detection approach that operates on a flow as a stream structure.
Our approach matches or exceeds existing machine learning techniques' accuracy, including state-of-the-art deep learning methods.
arXiv Detail & Related papers (2024-05-12T09:29:59Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
We propose a novel and severer backdoor attack, TransTroj, which enables the backdoors embedded in PTMs to efficiently transfer in the model supply chain.<n> Experimental results show that our method significantly outperforms SOTA task-agnostic backdoor attacks.
arXiv Detail & Related papers (2024-01-29T04:35:48Z) - Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM [12.164927192334748]
We propose a new fault attack on side-channel secure masked implementation of LWE-based key-encapsulation mechanisms.
We exploit the data dependency of the adder carry chain in A2B and extract sensitive information.
We show key recovery attacks of Kyber, although the leakage also exists for other schemes like Saber.
arXiv Detail & Related papers (2024-01-25T11:18:43Z) - EcoTTA: Memory-Efficient Continual Test-time Adaptation via
Self-distilled Regularization [71.70414291057332]
TTA may primarily be conducted on edge devices with limited memory.
Long-term adaptation often leads to catastrophic forgetting and error accumulation.
We present lightweight meta networks that can adapt the frozen original networks to the target domain.
arXiv Detail & Related papers (2023-03-03T13:05:30Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
arXiv Detail & Related papers (2022-11-18T07:27:07Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - FCOS: A simple and strong anchor-free object detector [111.87691210818194]
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion.
Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes.
In contrast, our proposed detector FCOS is anchor box free, as well as proposal free.
arXiv Detail & Related papers (2020-06-14T01:03:39Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.