Frugal Machine Learning for Energy-efficient, and Resource-aware Artificial Intelligence
- URL: http://arxiv.org/abs/2506.01869v1
- Date: Mon, 02 Jun 2025 16:56:21 GMT
- Title: Frugal Machine Learning for Energy-efficient, and Resource-aware Artificial Intelligence
- Authors: John Violos, Konstantina-Christina Diamanti, Ioannis Kompatsiaris, Symeon Papadopoulos,
- Abstract summary: Frugal Machine Learning (FML) refers to the practice of designing Machine Learning (ML) models that are efficient, cost-effective, and mindful of resource constraints.<n>FML strategies can be broadly categorized into input frugality, learning process frugality, and model frugality.<n>This chapter explores recent advancements, applications, and open challenges in FML.
- Score: 13.783950035836593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frugal Machine Learning (FML) refers to the practice of designing Machine Learning (ML) models that are efficient, cost-effective, and mindful of resource constraints. This field aims to achieve acceptable performance while minimizing the use of computational resources, time, energy, and data for both training and inference. FML strategies can be broadly categorized into input frugality, learning process frugality, and model frugality, each focusing on reducing resource consumption at different stages of the ML pipeline. This chapter explores recent advancements, applications, and open challenges in FML, emphasizing its importance for smart environments that incorporate edge computing and IoT devices, which often face strict limitations in bandwidth, energy, or latency. Technological enablers such as model compression, energy-efficient hardware, and data-efficient learning techniques are discussed, along with adaptive methods including parameter regularization, knowledge distillation, and dynamic architecture design that enable incremental model updates without full retraining. Furthermore, it provides a comprehensive taxonomy of frugal methods, discusses case studies across diverse domains, and identifies future research directions to drive innovation in this evolving field.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - PEFT A2Z: Parameter-Efficient Fine-Tuning Survey for Large Language and Vision Models [0.0]
Large models such as Large Language Models (LLMs) and Vision Language Models (VLMs) have transformed artificial intelligence.<n>Fine-tuning these models remains expensive, requiring extensive computational resources, memory, and task-specific data.<n>Efficient Fine-Tuning (PEFT) has emerged as a promising solution that allows adapting large models to downstream tasks by updating only a small portion of parameters.
arXiv Detail & Related papers (2025-04-19T00:33:16Z) - Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning [39.73152182572741]
This paper proposes a novel framework, named Quantized Split Federated Fine-Tuning Large AI Model (SFLAM)<n>By partitioning the training load between edge devices and servers, SFLAM can facilitate the operation of large models on devices.<n>SFLAM incorporates quantization management, power control, and bandwidth allocation strategies to enhance training efficiency.
arXiv Detail & Related papers (2025-04-12T07:55:11Z) - Sometimes Painful but Certainly Promising: Feasibility and Trade-offs of Language Model Inference at the Edge [3.1471494780647795]
Recent trends show a growing focus on compact models-typically under 10 billion parameters-enabled by techniques such as quantization.<n>This shift paves the way for LMs on edge devices, offering potential benefits such as enhanced privacy, reduced latency, and improved data sovereignty.<n>We present a comprehensive evaluation of generative LM inference on representative CPU-based and GPU-accelerated edge devices.
arXiv Detail & Related papers (2025-03-12T07:01:34Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.<n>Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
We provide an overview of the current state of the art of machine learning techniques.
We focus on resource-efficient inference based on deep neural networks (DNNs), the predominant machine learning models of the past decade.
We substantiate our discussion with experiments on well-known benchmark data sets using compression techniques.
arXiv Detail & Related papers (2020-01-07T14:17:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.