Understanding Overadaptation in Supervised Fine-Tuning: The Role of Ensemble Methods
- URL: http://arxiv.org/abs/2506.01901v1
- Date: Mon, 02 Jun 2025 17:23:16 GMT
- Title: Understanding Overadaptation in Supervised Fine-Tuning: The Role of Ensemble Methods
- Authors: Yifan Hao, Xingyuan Pan, Hanning Zhang, Chenlu Ye, Rui Pan, Tong Zhang,
- Abstract summary: Supervised fine-tuning is the dominant approach for adapting foundation models to specialized tasks.<n>In vision models, ensembling a pretrained model with its fine-tuned counterpart has been shown to mitigate this issue.<n>We observe an overadaptation phenomenon: the ensemble model not only retains general knowledge from the foundation model but also outperforms the fine-tuned model even on the fine-tuning domain itself.
- Score: 11.695512384798299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised fine-tuning (SFT) on domain-specific data is the dominant approach for adapting foundation models to specialized tasks. However, it has been observed that SFT models tend to forget knowledge acquired during pretraining. In vision models, ensembling a pretrained model with its fine-tuned counterpart has been shown to mitigate this issue. In this work, we demonstrate that the same holds for language models, and, more strikingly, we observe an overadaptation phenomenon: the ensemble model not only retains general knowledge from the foundation model but also outperforms the fine-tuned model even on the fine-tuning domain itself. Despite the empirical success of ensembling, a theoretical understanding of its benefits remains underexplored. We develop a formal theoretical analysis of the overadaptation phenomenon. Ensembling mitigates this by balancing two primary sources of error: bias, caused by insufficient fine-tuning, and variance, introduced by overfitting to fine-tuning data. While regularization techniques aim to address this trade-off, we show that ensembling provides a more effective solution. We analyze this phenomenon in over-parameterized linear settings and demonstrate that interpolating between pretrained and fine-tuned weights significantly improves performance. These findings offer theoretical justification for the observed advantages of model ensembling, supported by empirical experiments consistent with our analysis.
Related papers
- Weight Spectra Induced Efficient Model Adaptation [54.8615621415845]
Fine-tuning large-scale foundation models incurs prohibitive computational costs.<n>We show that fine-tuning predominantly amplifies the top singular values while leaving the remainder largely intact.<n>We propose a novel method that leverages learnable rescaling of top singular directions.
arXiv Detail & Related papers (2025-05-29T05:03:29Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.<n>Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)<n>Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Adversarial Transferability in Deep Denoising Models: Theoretical Insights and Robustness Enhancement via Out-of-Distribution Typical Set Sampling [6.189440665620872]
Deep learning-based image denoising models demonstrate remarkable performance, but their lack of robustness analysis remains a significant concern.<n>A major issue is that these models are susceptible to adversarial attacks, where small, carefully crafted perturbations to input data can cause them to fail.<n>We propose a novel adversarial defense method: the Out-of-Distribution Typical Set Sampling Training strategy.
arXiv Detail & Related papers (2024-12-08T13:47:57Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Bias Mitigation in Fine-tuning Pre-trained Models for Enhanced Fairness
and Efficiency [26.86557244460215]
We introduce an efficient and robust fine-tuning framework specifically designed to mitigate biases in new tasks.
Our empirical analysis shows that the parameters in the pre-trained model that affect predictions for different demographic groups are different.
We employ a transfer learning strategy that neutralizes the importance of these influential weights, determined using Fisher information across demographic groups.
arXiv Detail & Related papers (2024-03-01T16:01:28Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
Denoising diffusion models have emerged as a dominant approach for image generation.
They still suffer from slow convergence in training and color shift issues in sampling.
In this paper, we identify that these obstacles can be largely attributed to bias and suboptimality inherent in the default training paradigm.
arXiv Detail & Related papers (2023-10-12T16:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.