Bias Mitigation in Fine-tuning Pre-trained Models for Enhanced Fairness
and Efficiency
- URL: http://arxiv.org/abs/2403.00625v1
- Date: Fri, 1 Mar 2024 16:01:28 GMT
- Title: Bias Mitigation in Fine-tuning Pre-trained Models for Enhanced Fairness
and Efficiency
- Authors: Yixuan Zhang and Feng Zhou
- Abstract summary: We introduce an efficient and robust fine-tuning framework specifically designed to mitigate biases in new tasks.
Our empirical analysis shows that the parameters in the pre-trained model that affect predictions for different demographic groups are different.
We employ a transfer learning strategy that neutralizes the importance of these influential weights, determined using Fisher information across demographic groups.
- Score: 26.86557244460215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning pre-trained models is a widely employed technique in numerous
real-world applications. However, fine-tuning these models on new tasks can
lead to unfair outcomes. This is due to the absence of generalization
guarantees for fairness properties, regardless of whether the original
pre-trained model was developed with fairness considerations. To tackle this
issue, we introduce an efficient and robust fine-tuning framework specifically
designed to mitigate biases in new tasks. Our empirical analysis shows that the
parameters in the pre-trained model that affect predictions for different
demographic groups are different, so based on this observation, we employ a
transfer learning strategy that neutralizes the importance of these influential
weights, determined using Fisher information across demographic groups.
Additionally, we integrate this weight importance neutralization strategy with
a matrix factorization technique, which provides a low-rank approximation of
the weight matrix using fewer parameters, reducing the computational demands.
Experiments on multiple pre-trained models and new tasks demonstrate the
effectiveness of our method.
Related papers
- Optimizing importance weighting in the presence of sub-population shifts [0.0]
A distribution shift between the training and test data can severely harm performance of machine learning models.
We argue that existing weightings for determining the weights are suboptimal, as they neglect the increase of the variance of the estimated model due to the finite sample size of the training data.
We propose a bi-level optimization procedure in which the weights and model parameters are optimized simultaneously.
arXiv Detail & Related papers (2024-10-18T09:21:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Gradient Surgery for One-shot Unlearning on Generative Model [0.989293617504294]
We introduce a simple yet effective approach to remove a data influence on the deep generative model.
Inspired by works in multi-task learning, we propose to manipulate gradients to regularize the interplay of influence among samples.
arXiv Detail & Related papers (2023-07-10T13:29:23Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.