Fast and Robust Rotation Averaging with Anisotropic Coordinate Descent
- URL: http://arxiv.org/abs/2506.01940v1
- Date: Mon, 02 Jun 2025 17:55:02 GMT
- Title: Fast and Robust Rotation Averaging with Anisotropic Coordinate Descent
- Authors: Yaroslava Lochman, Carl Olsson, Christopher Zach,
- Abstract summary: We bridge the gap between optimality, robustness and efficiency of anisotropic rotation averaging.<n>Our algorithm achieves state-of-the-art performance on public structure-from-motion datasets.
- Score: 17.610655327747246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anisotropic rotation averaging has recently been explored as a natural extension of respective isotropic methods. In the anisotropic formulation, uncertainties of the estimated relative rotations -- obtained via standard two-view optimization -- are propagated to the optimization of absolute rotations. The resulting semidefinite relaxations are able to recover global minima but scale poorly with the problem size. Local methods are fast and also admit robust estimation but are sensitive to initialization. They usually employ minimum spanning trees and therefore suffer from drift accumulation and can get trapped in poor local minima. In this paper, we attempt to bridge the gap between optimality, robustness and efficiency of anisotropic rotation averaging. We analyze a family of block coordinate descent methods initially proposed to optimize the standard chordal distances, and derive a much simpler formulation and an anisotropic extension obtaining a fast general solver. We integrate this solver into the extended anisotropic large-scale robust rotation averaging pipeline. The resulting algorithm achieves state-of-the-art performance on public structure-from-motion datasets. Project page: https://ylochman.github.io/acd
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Revisiting Rotation Averaging: Uncertainties and Robust Losses [51.64986160468128]
We argue that the main problem of current methods is the minimized cost function that is only weakly connected with the input data via the estimated epipolar.
We propose to better model the underlying noise distributions by directly propagating the uncertainty from the point correspondences into the rotation averaging.
arXiv Detail & Related papers (2023-03-09T11:51:20Z) - RAGO: Recurrent Graph Optimizer For Multiple Rotation Averaging [62.315673415889314]
This paper proposes a deep recurrent Rotation Averaging Graph (RAGO) for Multiple Rotation Averaging (MRA)
Our framework is a real-time learning-to-optimize rotation averaging graph with a tiny size deployed for real-world applications.
arXiv Detail & Related papers (2022-12-14T13:19:40Z) - Rotation Averaging in a Split Second: A Primal-Dual Method and a
Closed-Form for Cycle Graphs [2.1423963702744597]
A cornerstone of geometric reconstruction averaging seeks the set of absolute rotations that optimally explains a set of measured relative orientations between them.
Our proposed methods achieve a significant gain both in precision and performance.
arXiv Detail & Related papers (2021-09-16T15:22:28Z) - Robust Training in High Dimensions via Block Coordinate Geometric Median
Descent [69.47594803719333]
Geometric median (textGm) is a classical method in statistics for achieving a robust estimation of the uncorrupted data.
In this paper, we show that by that by applying textscGm to only a chosen block of coordinates at a time, one can retain a breakdown point of 0.5 judiciously for smooth nontext problems.
arXiv Detail & Related papers (2021-06-16T15:55:50Z) - Rotation Coordinate Descent for Fast Globally Optimal Rotation Averaging [47.3713707521106]
We present a fast algorithm that achieves global optimality called rotation coordinate descent (RCD)
Unlike block coordinate descent (BCD) which solves SDP by updating the semidefinite matrix in a row-by-row fashion, RCD directly maintains and updates all valid rotations throughout the iterations.
We mathematically prove the convergence of our algorithm and empirically show its superior efficiency over state-of-the-art global methods.
arXiv Detail & Related papers (2021-03-15T11:31:34Z) - Sparse Representations of Positive Functions via First and Second-Order
Pseudo-Mirror Descent [15.340540198612823]
We consider expected risk problems when the range of the estimator is required to be nonnegative.
We develop first and second-order variants of approximation mirror descent employing emphpseudo-gradients.
Experiments demonstrate favorable performance on ingeneous Process intensity estimation in practice.
arXiv Detail & Related papers (2020-11-13T21:54:28Z) - Shonan Rotation Averaging: Global Optimality by Surfing $SO(p)^n$ [26.686173666277725]
Shonan Rotation Averaging is guaranteed to recover globally optimal solutions under mild assumptions on the measurement noise.
Our method employs semidefinite relaxation in order to recover provably globally optimal solutions of the rotation averaging problem.
arXiv Detail & Related papers (2020-08-06T16:08:23Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.