Graph-Based Adversarial Domain Generalization with Anatomical Correlation Knowledge for Cross-User Human Activity Recognition
- URL: http://arxiv.org/abs/2506.01962v1
- Date: Thu, 08 May 2025 02:19:04 GMT
- Title: Graph-Based Adversarial Domain Generalization with Anatomical Correlation Knowledge for Cross-User Human Activity Recognition
- Authors: Xiaozhou Ye, Kevin I-Kai Wang,
- Abstract summary: Cross-user variability poses a significant challenge in sensor-based Human Activity Recognition systems.<n>We propose GNN-ADG (Graph Neural Network with Adversarial Domain Generalization) to achieve robust cross-user generalization.<n>GNN-ADG models spatial relationships between sensors on different anatomical body parts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cross-user variability poses a significant challenge in sensor-based Human Activity Recognition (HAR) systems, as traditional models struggle to generalize across users due to differences in behavior, sensor placement, and data distribution. To address this, we propose GNN-ADG (Graph Neural Network with Adversarial Domain Generalization), a novel method that leverages both the strength from both the Graph Neural Networks (GNNs) and adversarial learning to achieve robust cross-user generalization. GNN-ADG models spatial relationships between sensors on different anatomical body parts, extracting three types of Anatomical Units: (1) Interconnected Units, capturing inter-relations between neighboring sensors; (2) Analogous Units, grouping sensors on symmetrical or functionally similar body parts; and (3) Lateral Units, connecting sensors based on their position to capture region-specific coordination. These units information are fused into an unified graph structure with a cyclic training strategy, dynamically integrating spatial, functional, and lateral correlations to facilitate a holistic, user-invariant representation. Information fusion mechanism of GNN-ADG occurs by iteratively cycling through edge topologies during training, allowing the model to refine its understanding of inter-sensor relationships across diverse perspectives. By representing the spatial configuration of sensors as an unified graph and incorporating adversarial learning, Information Fusion GNN-ADG effectively learns features that generalize well to unseen users without requiring target user data during training, making it practical for real-world applications.
Related papers
- Deformable Attention Graph Representation Learning for Histopathology Whole Slide Image Analysis [9.724220291296927]
We propose a novel GNN framework with deformable attention for pathology image analysis.<n>We construct a dynamic weighted directed graph based on patch features, where each node aggregates contextual information from its neighbors via attention-weighted edges.<n>Specifically, we incorporate learnable spatial offsets informed by the real coordinates of each patch, enabling the model to adaptively attend to morphologically relevant regions across the slide.
arXiv Detail & Related papers (2025-08-07T13:30:29Z) - Domain-Adversarial Anatomical Graph Networks for Cross-User Human Activity Recognition [0.0]
Cross-user variability in Human Activity Recognition (HAR) remains a critical challenge due to differences in sensor placement, body dynamics, and behavioral patterns.<n>We propose an Edge-Enhanced Graph-Based Adversarial Domain Generalization framework that integrates anatomical correlation knowledge into a unified graph neural network architecture.
arXiv Detail & Related papers (2025-05-08T02:30:55Z) - TransGUNet: Transformer Meets Graph-based Skip Connection for Medical Image Segmentation [1.2186950360560143]
We introduce an attentional cross-scale graph neural network (ACS-GNN) to enhance skip connection framework.<n>ACS-GNN converts cross-scale feature maps into a graph structure and captures complex anatomical structures through node attention.<n>Our framework, TransGUNet, comprises ACS-GNN and EFS-based spatial attentio to enhance domain generalizability across various modalities.
arXiv Detail & Related papers (2025-02-14T05:54:13Z) - GEARS: Local Geometry-aware Hand-object Interaction Synthesis [38.75942505771009]
We introduce a novel joint-centered sensor designed to reason about local object geometry near potential interaction regions.
As an important step towards mitigating the learning complexity, we transform the points from global frame to template hand frame and use a shared module to process sensor features of each individual joint.
This is followed by a perceptual-temporal transformer network aimed at capturing correlation among the joints in different dimensions.
arXiv Detail & Related papers (2024-04-02T09:18:52Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - HAGCN : Network Decentralization Attention Based Heterogeneity-Aware
Spatiotemporal Graph Convolution Network for Traffic Signal Forecasting [0.0]
We study the heterogeneous characteristics inherent in traffic signal data to learn hidden relationships between sensors in various ways.
We propose a network decentralization attention-aware graph convolution network (HAGCN) method that aggregates the hidden states of adjacent nodes.
arXiv Detail & Related papers (2022-09-05T13:45:52Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.