HAGCN : Network Decentralization Attention Based Heterogeneity-Aware
Spatiotemporal Graph Convolution Network for Traffic Signal Forecasting
- URL: http://arxiv.org/abs/2209.01967v1
- Date: Mon, 5 Sep 2022 13:45:52 GMT
- Title: HAGCN : Network Decentralization Attention Based Heterogeneity-Aware
Spatiotemporal Graph Convolution Network for Traffic Signal Forecasting
- Authors: JunKyu Jang and Sung-Hyuk Park
- Abstract summary: We study the heterogeneous characteristics inherent in traffic signal data to learn hidden relationships between sensors in various ways.
We propose a network decentralization attention-aware graph convolution network (HAGCN) method that aggregates the hidden states of adjacent nodes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction of spatiotemporal networks using graph convolution networks
(GCNs) has become one of the most popular methods for predicting traffic
signals. However, when using a GCN for traffic speed prediction, the
conventional approach generally assumes the relationship between the sensors as
a homogeneous graph and learns an adjacency matrix using the data accumulated
by the sensors. However, the spatial correlation between sensors is not
specified as one but defined differently from various viewpoints. To this end,
we aim to study the heterogeneous characteristics inherent in traffic signal
data to learn the hidden relationships between sensors in various ways.
Specifically, we designed a method to construct a heterogeneous graph for each
module by dividing the spatial relationship between sensors into static and
dynamic modules. We propose a network decentralization attention based
heterogeneity-aware graph convolution network (HAGCN) method that aggregates
the hidden states of adjacent nodes by considering the importance of each
channel in a heterogeneous graph. Experimental results on real traffic datasets
verified the effectiveness of the proposed method, achieving a 6.35%
improvement over the existing model and realizing state-of-the-art prediction
performance.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper.
In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously.
Experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
arXiv Detail & Related papers (2022-05-18T01:59:30Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Bayesian Spatio-Temporal Graph Convolutional Network for Traffic
Forecasting [22.277878492878475]
We propose a Bayesian S-temporal ConTemporal Graphal Network (BSTGCN) for traffic prediction.
The graph structure in our network is learned from the physical topology of the road network and traffic data in an end-to-end manner.
We verify the effectiveness of our method on two real-world datasets, and the experimental results demonstrate that BSTGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-10-15T03:41:37Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.