A Data-Driven Approach to Enhancing Gravity Models for Trip Demand Prediction
- URL: http://arxiv.org/abs/2506.01964v1
- Date: Fri, 09 May 2025 18:55:19 GMT
- Title: A Data-Driven Approach to Enhancing Gravity Models for Trip Demand Prediction
- Authors: Kamal Acharya, Mehul Lad, Liang Sun, Houbing Song,
- Abstract summary: This study introduces a data-driven approach to enhance the gravity model by integrating geographical, economic, social, and travel data.<n>Using machine learning techniques, we extend the capabilities of the traditional model to handle more complex interactions between variables.<n>Results show a 51.48% improvement in R-squared, indicating a substantial enhancement in the model's explanatory power.
- Score: 21.445133878049333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of trips between zones is critical for transportation planning, as it supports resource allocation and infrastructure development across various modes of transport. Although the gravity model has been widely used due to its simplicity, it often inadequately represents the complex factors influencing modern travel behavior. This study introduces a data-driven approach to enhance the gravity model by integrating geographical, economic, social, and travel data from the counties in Tennessee and New York state. Using machine learning techniques, we extend the capabilities of the traditional model to handle more complex interactions between variables. Our experiments demonstrate that machine learning-enhanced models significantly outperform the traditional model. Our results show a 51.48% improvement in R-squared, indicating a substantial enhancement in the model's explanatory power. Also, a 63.59% reduction in Mean Absolute Error (MAE) reflects a significant increase in prediction accuracy. Furthermore, a 44.32% increase in Common Part of Commuters (CPC) demonstrates improved prediction reliability. These findings highlight the substantial benefits of integrating diverse datasets and advanced algorithms into transportation models. They provide urban planners and policymakers with more reliable forecasting and decision-making tools.
Related papers
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - Hybrid Machine Learning Model with a Constrained Action Space for Trajectory Prediction [44.99833362998488]
This work introduces a novel hybrid model that combines deep learning with a kinematic motion model.<n>It is able to predict object attributes such as acceleration and yaw rate and generate trajectories based on them.
arXiv Detail & Related papers (2025-01-07T10:06:59Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model [45.45700202300292]
CaPaint aims to identify causal regions in data and endow model with causal reasoning ability in a two-stage process.<n>By using a fine-tuned unconditional Diffusion Probabilistic Model (DDPM) as the generative prior, we in-fill the masks defined as environmental parts.<n>Experiments conducted on five real-world ST benchmarks demonstrate that integrating the CaPaint concept allows models to achieve improvements ranging from 4.3% to 77.3%.
arXiv Detail & Related papers (2024-09-29T08:18:50Z) - Predicting the Skies: A Novel Model for Flight-Level Passenger Traffic
Forecasting [0.0]
This study introduces a novel, multimodal deep learning approach to the challenge of predicting flight-level passenger traffic.
Our model ingests historical traffic data, fare closure information, and seasonality attributes specific to each flight.
Our model demonstrates an approximate 33% improvement in Mean Squared Error compared to traditional benchmarks.
arXiv Detail & Related papers (2024-01-07T06:51:26Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Exploring Deep Learning Approaches to Predict Person and Vehicle Trips:
An Analysis of NHTS Data [0.0]
This study explores the potential of deep learning techniques to transform the way we approach trip predictions.
We developed and trained a deep learning model for predicting person and vehicle trips.
Our model achieved an impressive accuracy of 98% for person trip prediction and 96% for vehicle trip estimation.
arXiv Detail & Related papers (2023-08-10T16:06:10Z) - Exploring The Landscape of Distributional Robustness for Question
Answering Models [47.178481044045505]
Investigation spans over 350 models and 16 question answering datasets.
We find that, in many cases, model variations do not affect robustness.
We release all evaluations to encourage researchers to further analyze robustness trends for question answering models.
arXiv Detail & Related papers (2022-10-22T18:17:31Z) - A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago [0.0]
This study proposes a Clustering-aided Ensemble Method (CEM) to forecast the zone-to-zone travel demand for ridesourcing services.
We implement and test the proposed methodology by using the ridesourcing-trip data in Chicago.
arXiv Detail & Related papers (2021-09-08T04:58:29Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Tourism Demand Forecasting: An Ensemble Deep Learning Approach [4.516340427736994]
We use historical tourist arrival data, economic variable data and search intensity index (SII) data to forecast tourist arrivals in Beijing.
Our proposed B-SAKE approach outperforms benchmark models in terms of level accuracy, directional accuracy and even statistical significance.
Both bagging and stacked autoencoder can effectively alleviate the challenges brought by tourism big data and improve the forecasting performance of the models.
arXiv Detail & Related papers (2020-02-19T02:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.