Efficient ANN-SNN Conversion with Error Compensation Learning
- URL: http://arxiv.org/abs/2506.01968v1
- Date: Mon, 12 May 2025 15:31:34 GMT
- Title: Efficient ANN-SNN Conversion with Error Compensation Learning
- Authors: Chang Liu, Jiangrong Shen, Xuming Ran, Mingkun Xu, Qi Xu, Yi Xu, Gang Pan,
- Abstract summary: Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency.<n>Current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors.<n>This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning.
- Score: 20.155985131466174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks (ANNs) have demonstrated outstanding performance in numerous tasks, but deployment in resource-constrained environments remains a challenge due to their high computational and memory requirements. Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency, providing a bio-inspired alternative. However, current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors such as clipping, quantization, and uneven activation. This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning. We introduce a learnable threshold clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy to mitigate the conversion error. Together, these techniques address the clipping error through adaptive thresholds, dynamically reduce the quantization error through dual-threshold neurons, and minimize the non-uniformity error by effectively managing the membrane potential. Experimental results on CIFAR-10, CIFAR-100, ImageNet datasets show that our method achieves high-precision and ultra-low latency among existing conversion methods. Using only two time steps, our method significantly reduces the inference time while maintains competitive accuracy of 94.75% on CIFAR-10 dataset under ResNet-18 structure. This research promotes the practical application of SNNs on low-power hardware, making efficient real-time processing possible.
Related papers
- Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Network [1.5215973379400674]
Spiking Neural Networks (SNNs) are seen as an energy-efficient alternative to traditional Artificial Neural Networks (ANNs)<n>We present a unified training-free conversion framework that significantly enhances both the performance and efficiency of converted SNNs.
arXiv Detail & Related papers (2024-12-18T09:38:54Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
Spiking Neural Networks (SNNs) have attracted great attention due to their distinctive characteristics of low power consumption and temporal information processing.
ANN-SNN conversion, as the most commonly used training method for applying SNNs, can ensure that converted SNNs achieve comparable performance to ANNs on large-scale datasets.
In this paper, instead of evaluating different conversion errors and then eliminating these errors, we define an offset spike to measure the degree of deviation between actual and desired SNN firing rates.
arXiv Detail & Related papers (2023-02-21T14:10:56Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
We propose an ultra-low latency adaptive local binary spiking neural network (ALBSNN) with accuracy loss estimators.
Experimental results show that this method can reduce storage space by more than 20 % without losing network accuracy.
arXiv Detail & Related papers (2022-07-31T09:03:57Z) - Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization [30.098268054714048]
Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation.
A popular approach for implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs.
In this paper, we first identify that such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs.
Inspired by this, we decompose the conversion error into three parts: quantization error, clipping error, and residual membrane potential representation error.
arXiv Detail & Related papers (2022-05-16T06:53:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
Spiking Neural Networks (SNNs) have been attached great importance due to the distinctive properties of low power consumption, biological plausibility, and adversarial robustness.
The most effective way to train deep SNNs is through ANN-to-SNN conversion, which have yielded the best performance in deep network structure and large-scale datasets.
In this paper, we aim to achieve high-performance converted SNNs with extremely low latency (fewer than 32 time-steps)
arXiv Detail & Related papers (2022-02-03T07:15:43Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.