ChatCFD: an End-to-End CFD Agent with Domain-specific Structured Thinking
- URL: http://arxiv.org/abs/2506.02019v1
- Date: Wed, 28 May 2025 08:43:49 GMT
- Title: ChatCFD: an End-to-End CFD Agent with Domain-specific Structured Thinking
- Authors: E Fan, Weizong Wang, Tianhan Zhang,
- Abstract summary: ChatCFD automates a large language model-driven CFD pipeline within the OpenFOAM framework.<n>It enables users to configure and execute complex simulations from natural language prompts or published literature with minimal expertise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) is essential for scientific and engineering advancements but is limited by operational complexity and the need for extensive expertise. This paper presents ChatCFD, a large language model-driven pipeline that automates CFD workflows within the OpenFOAM framework. It enables users to configure and execute complex simulations from natural language prompts or published literature with minimal expertise. The innovation is its structured approach to database construction, configuration validation, and error reflection, integrating CFD and OpenFOAM knowledge with general language models to improve accuracy and adaptability. Validation shows ChatCFD can autonomously reproduce published CFD results, handling complex, unseen configurations beyond basic examples, a task challenging for general language models.
Related papers
- Re:Form -- Reducing Human Priors in Scalable Formal Software Verification with RL in LLMs: A Preliminary Study on Dafny [68.00108157244952]
Large Language Models (LLMs) trained with Reinforcement Learning (RL) face a significant challenge: their verification processes are neither reliable nor scalable.<n>A promising yet largely uncharted alternative is formal language-based reasoning.<n>Grounding LLMs in rigorous formal systems where generative models operate in formal language spaces (e.g., Dafny) enables the automatic and mathematically provable verification of their reasoning processes and outcomes.
arXiv Detail & Related papers (2025-07-22T08:13:01Z) - A Domain Adaptation of Large Language Models for Classifying Mechanical Assembly Components [0.9134277125744795]
Functional modeling enables designers to reason about product functions before specific structural details are determined.<n>The effectiveness of function-based design is often hindered by the lack of well-structured and comprehensive functional data.<n>This study proposes a novel LLM-based domain adaptation (DA) framework using fine-tuning for the automated classification of mechanical assembly parts' functions.
arXiv Detail & Related papers (2025-05-02T23:32:50Z) - Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations [11.902947290205645]
Large language models (LLMs) have advanced scientific computing, their use in CFD is automating.<n>We introduce a novel approach centered on domain-specific LLM adaptation.<n>A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors.
arXiv Detail & Related papers (2025-04-13T14:35:30Z) - A Status Quo Investigation of Large Language Models towards Cost-Effective CFD Automation with OpenFOAMGPT: ChatGPT vs. Qwen vs. Deepseek [26.280882787841204]
We evaluated the performance of OpenFOAMGPT incorporating multiple large-language models.<n>Some of the present models efficiently manage different CFD tasks such as adjusting boundary conditions.<n>Smaller models like QwQ-32B struggled with generating valid solver files for complex processes.
arXiv Detail & Related papers (2025-04-02T14:04:52Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - A Large Language Model and Denoising Diffusion Framework for Targeted Design of Microstructures with Commands in Natural Language [0.0]
We propose a framework that integrates Natural Language Processing (NLP), Large Language Models (LLMs), and Denoising Diffusion Probabilistic Models (DDPMs)
Our framework employs contextual data augmentation, driven by a pretrained LLM, to generate and expand a diverse dataset of microstructure descriptors.
A retrained NER model extracts relevant microstructure descriptors from user-provided natural language inputs, which are then used by the DDPM to generate microstructures with targeted mechanical properties and topological features.
arXiv Detail & Related papers (2024-09-22T14:45:22Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAM is a novel multi-agent collaborations framework.
It aims to complete CFD simulation tasks with only natural language as input.
It harnesses the power of MetaGPT's assembly line paradigm.
arXiv Detail & Related papers (2024-07-31T04:01:08Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.<n>Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)<n>We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
Prompts have been shown to be an effective method to adapt a frozen Pretrained Language Model (PLM) to perform well on downstream tasks.
We propose a new model, Prompt Production System (PRopS), which learns to transform task instructions or input metadata, into continuous prompts.
arXiv Detail & Related papers (2023-07-04T02:47:42Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
We demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture.
We add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions.
We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales.
arXiv Detail & Related papers (2021-06-10T15:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.