A tertiary review on quantum cryptography
- URL: http://arxiv.org/abs/2506.02028v1
- Date: Thu, 29 May 2025 20:00:56 GMT
- Title: A tertiary review on quantum cryptography
- Authors: Luiz Filipi Anderson de Sousa Moura, Carlos Becker Westphall,
- Abstract summary: Quantum cryptography uses the principle of quantum physics to produce theoretically unbreakable security.<n>The results showed a prevalence of QKD over other techniques among the selected papers.<n>The field still faces many problems related to implementation cost, error correction, decoherence, key rates, communication distance, and quantum hacking.
- Score: 0.4419843514606336
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computers impose an immense threat to system security. As a countermeasure, new cryptographic classes have been created to prevent these attacks. Technologies such as post-quantum cryptography and quantum cryptography. Quantum cryptography uses the principle of quantum physics to produce theoretically unbreakable security. This tertiary review selected 51 secondary studies from the Scopus database and presented bibliometric analysis, a list of the main techniques used in the field, and existing open challenges and future directions in quantum cryptography research. The results showed a prevalence of QKD over other techniques among the selected papers and stated that the field still faces many problems related to implementation cost, error correction, decoherence, key rates, communication distance, and quantum hacking.
Related papers
- Quantum-Accelerated Wireless Communications: Concepts, Connections, and Implications [59.0413662882849]
Quantum computing is poised to redefine the algorithmic foundations of communication systems.<n>This article outlines the fundamentals of quantum computing in a style familiar to the communications society.<n>We highlight a mathematical harmony between quantum and wireless systems, which makes the topic more enticing to wireless researchers.
arXiv Detail & Related papers (2025-06-25T22:25:47Z) - Post-Quantum Cryptography: An Analysis of Code-Based and Lattice-Based Cryptosystems [55.49917140500002]
Quantum computers will be able to break modern cryptographic systems using Shor's Algorithm.<n>We first examine the McEliece cryptosystem, a code-based scheme believed to be secure against quantum attacks.<n>We then explore NTRU, a lattice-based system grounded in the difficulty of solving the Shortest Vector Problem.
arXiv Detail & Related papers (2025-05-06T03:42:38Z) - Quantum cryptography beyond key distribution: theory and experiment [0.7499722271664147]
This article surveys the theoretical and experimental developments in quantum cryptography beyond QKD.
It provides an intuitive classification of the main quantum primitives and their security levels, summarizes their possibilities and limits, and discusses their implementation with current photonic technology.
arXiv Detail & Related papers (2024-11-13T18:54:19Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.<n>This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Applications of Post-quantum Cryptography [0.0]
The review employs a systematic scoping review with the scope restricted to the years 2022 and 2023.
The review examined the articles on the applications of quantum computing in various spheres.
The paper is analyzing various PQC algorithms, including lattice-based, hash-based, code-based, and isogeny-based cryptography.
arXiv Detail & Related papers (2024-06-19T06:45:39Z) - Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era [0.0]
Post-quantum cryptography (PQC) is a critical field aimed at developing resilient cryptographic algorithms to quantum attacks.
This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates impervious principles of quantum computing, and introduces various PQC algorithms.
arXiv Detail & Related papers (2024-03-18T12:51:56Z) - A Survey on Post-Quantum Cryptography: State-of-the-Art and Challenges [4.239503938472806]
We analyze the different types of post-quantum cryptography, quantum cryptography and quantum-resistant cryptography.
We conclude that due to quantum cryptography's present limitations it is not a viable solution like it is often presented to be.
arXiv Detail & Related papers (2023-12-16T12:17:44Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Cryptography: Quantum Key Distribution, a Non-technical Approach [0.0]
Quantum mechanics provides means to create an inherently secure communication channel that is protected by the laws of physics.
This paper is a non-technical overview of quantum key distribution, a type of cryptography poised to exploit the laws of quantum mechanics directly.
arXiv Detail & Related papers (2022-11-09T15:30:23Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.