論文の概要: Towards Better Generalization and Interpretability in Unsupervised Concept-Based Models
- arxiv url: http://arxiv.org/abs/2506.02092v1
- Date: Mon, 02 Jun 2025 16:26:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.910775
- Title: Towards Better Generalization and Interpretability in Unsupervised Concept-Based Models
- Title(参考訳): 教師なし概念ベースモデルの一般化と解釈可能性向上に向けて
- Authors: Francesco De Santis, Philippe Bich, Gabriele Ciravegna, Pietro Barbiero, Danilo Giordano, Tania Cerquitelli,
- Abstract要約: 本稿では、LCBM(Learningable Concept-Based Model)という、画像分類のための教師なし概念ベースモデルを提案する。
我々はLCBMが既存の教師なし概念ベースモデルを上回る一般化能力を示し、ブラックボックスモデルの性能とほぼ一致することを示した。
概念埋め込みの利用にもかかわらず、我々は概念の局所的な線形結合によるモデル解釈可能性を維持している。
- 参考スコア(独自算出の注目度): 9.340843984411137
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To increase the trustworthiness of deep neural networks, it is critical to improve the understanding of how they make decisions. This paper introduces a novel unsupervised concept-based model for image classification, named Learnable Concept-Based Model (LCBM) which models concepts as random variables within a Bernoulli latent space. Unlike traditional methods that either require extensive human supervision or suffer from limited scalability, our approach employs a reduced number of concepts without sacrificing performance. We demonstrate that LCBM surpasses existing unsupervised concept-based models in generalization capability and nearly matches the performance of black-box models. The proposed concept representation enhances information retention and aligns more closely with human understanding. A user study demonstrates the discovered concepts are also more intuitive for humans to interpret. Finally, despite the use of concept embeddings, we maintain model interpretability by means of a local linear combination of concepts.
- Abstract(参考訳): ディープニューラルネットワークの信頼性を高めるためには、彼らの意思決定方法の理解を改善することが重要である。
本稿では,Learningable Concept-Based Model (LCBM) という画像分類のための新しい教師なし概念ベースモデルを紹介し,その概念をベルヌーイラテント空間内のランダム変数としてモデル化する。
広範囲な人的監督を必要とする従来の手法や、限られたスケーラビリティに悩まされている従来の手法とは異なり、我々の手法は性能を犠牲にすることなく、少ない数のコンセプトを採用する。
我々はLCBMが既存の教師なし概念ベースモデルを上回る一般化能力を示し、ブラックボックスモデルの性能とほぼ一致することを示した。
提案した概念表現は情報保持を強化し,人間の理解とより密に一致させる。
ユーザーによる研究は、発見された概念が人間にとってより直感的に解釈できることを示した。
最後に,概念埋め込みを用いても,概念の局所的な線形結合によるモデル解釈可能性を維持する。
関連論文リスト
- Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
入力に依存した概念選択機構を導入し、すべてのクラスで小さな概念のサブセットが使用されることを保証します。
提案手法は, ダウンストリーム性能を改善し, ブラックボックスモデルの性能ギャップを狭めるものである。
論文 参考訳(メタデータ) (2024-07-04T13:34:50Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、隠蔽層が人間の理解可能な概念に結びついている一般的なアプローチである。
本稿では,Contrastive Language Imageモデルと単一スパース線形層に基づく,シンプルかつ直感的に解釈可能なフレームワークを提案する。
実験により、我々のフレームワークは、最近のCBMアプローチを精度的に上回るだけでなく、一例あたりの疎度も高いことを示す。
論文 参考訳(メタデータ) (2023-08-21T15:16:19Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
概念ボトルネックモデル(CBM)に基づく新しい解釈可能なモデルを提案する。
CBMは概念ラベルを使用して、中間層を追加の可視層としてトレーニングする。
これら2つの概念をシームレスにトレーニングし,計算量を削減することにより,教師付き概念と教師なし概念を同時に得ることができる。
論文 参考訳(メタデータ) (2022-02-03T08:30:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。