CoDial: Interpretable Task-Oriented Dialogue Systems Through Dialogue Flow Alignment
- URL: http://arxiv.org/abs/2506.02264v1
- Date: Mon, 02 Jun 2025 21:12:27 GMT
- Title: CoDial: Interpretable Task-Oriented Dialogue Systems Through Dialogue Flow Alignment
- Authors: Radin Shayanfar, Chu Fei Luo, Rohan Bhambhoria, Samuel Dahan, Xiaodan Zhu,
- Abstract summary: We introduce a novel framework, CoDial, that converts expert knowledge into executable conversation logic.<n>CoDial can be easily implemented in existing guardrailing languages, such as Colang.<n>It achieves state-of-the-art performance on the STAR dataset for inference-based models and is competitive with similar baselines on the well-known MultiWOZ dataset.
- Score: 24.936670177298584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often challenging to teach specialized, unseen tasks to dialogue systems due to the high cost of expert knowledge, training data, and high technical difficulty. To support domain-specific applications - such as law, medicine, or finance - it is essential to build frameworks that enable non-technical experts to define, test, and refine system behaviour with minimal effort. Achieving this requires cross-disciplinary collaboration between developers and domain specialists. In this work, we introduce a novel framework, CoDial (Code for Dialogue), that converts expert knowledge, represented as a novel structured heterogeneous graph, into executable conversation logic. CoDial can be easily implemented in existing guardrailing languages, such as Colang, to enable interpretable, modifiable, and true zero-shot specification of task-oriented dialogue systems. Empirically, CoDial achieves state-of-the-art performance on the STAR dataset for inference-based models and is competitive with similar baselines on the well-known MultiWOZ dataset. We also demonstrate CoDial's iterative improvement via manual and LLM-aided feedback, making it a practical tool for expert-guided alignment of LLMs in high-stakes domains.
Related papers
- ProKG-Dial: Progressive Multi-Turn Dialogue Construction with Domain Knowledge Graphs [3.9190413787169414]
Current large language models (LLMs) excel at general NLP tasks but often lack domain specific precision in professional settings.<n>We introduce ProKG Dial, a framework for constructing knowledge intensive multi turn dialogue using domain specific knowledge graphs (KGs)<n>We validate ProKG Dial on a medical knowledge graph by evaluating the generated dialogues in terms of diversity, semantic coherence, and entity coverage.
arXiv Detail & Related papers (2025-08-03T17:52:42Z) - Knowledge Protocol Engineering: A New Paradigm for AI in Domain-Specific Knowledge Work [0.456877715768796]
Knowledge Protocol Engineering (KPE) is a new paradigm focused on systematically translating human expert knowledge into a machine-executable Knowledge Protocol.<n>We argue that a well-engineered Knowledge Protocol allows a generalist LLM to function as a specialist, capable of decomposing abstract queries and executing complex, multi-step tasks.
arXiv Detail & Related papers (2025-07-03T16:21:14Z) - Keep the General, Inject the Specific: Structured Dialogue Fine-Tuning for Knowledge Injection without Catastrophic Forgetting [24.67373225584835]
Large Vision Language Models have demonstrated impressive versatile capabilities through extensive multimodal pre-training.<n>These models struggle with a fundamental dilemma: direct adaptation approaches that inject domain-specific knowledge often trigger catastrophic forgetting of foundational visual-linguistic abilities.<n>We introduce Structured Dialogue Fine-Tuning (SDFT), an effective approach that effectively injects domain-specific knowledge while minimizing catastrophic forgetting.
arXiv Detail & Related papers (2025-04-27T18:04:02Z) - Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems [0.21756081703275998]
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs)<n>The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications.<n>We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Booking System and an Interactive Ticket Copilot.
arXiv Detail & Related papers (2025-01-20T17:19:02Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - Knowledge-grounded Dialog State Tracking [12.585986197627477]
We propose to perform dialog state tracking grounded on knowledge encoded externally.
We query relevant knowledge of various forms based on the dialog context.
We demonstrate superior performance of our proposed method over strong baselines.
arXiv Detail & Related papers (2022-10-13T01:34:08Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - Dialogue Meaning Representation for Task-Oriented Dialogue Systems [51.91615150842267]
We propose Dialogue Meaning Representation (DMR), a flexible and easily extendable representation for task-oriented dialogue.
Our representation contains a set of nodes and edges with inheritance hierarchy to represent rich semantics for compositional semantics and task-specific concepts.
We propose two evaluation tasks to evaluate different machine learning based dialogue models, and further propose a novel coreference resolution model GNNCoref for the graph-based coreference resolution task.
arXiv Detail & Related papers (2022-04-23T04:17:55Z) - Continual Learning in Task-Oriented Dialogue Systems [49.35627673523519]
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining.
We propose a continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in four settings.
arXiv Detail & Related papers (2020-12-31T08:44:25Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z) - Modelling Hierarchical Structure between Dialogue Policy and Natural
Language Generator with Option Framework for Task-oriented Dialogue System [49.39150449455407]
HDNO is an option framework for designing latent dialogue acts to avoid designing specific dialogue act representations.
We test HDNO on MultiWoz 2.0 and MultiWoz 2.1, the datasets on multi-domain dialogues, in comparison with word-level E2E model trained with RL, LaRL and HDSA.
arXiv Detail & Related papers (2020-06-11T20:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.