Knowledge Protocol Engineering: A New Paradigm for AI in Domain-Specific Knowledge Work
- URL: http://arxiv.org/abs/2507.02760v1
- Date: Thu, 03 Jul 2025 16:21:14 GMT
- Title: Knowledge Protocol Engineering: A New Paradigm for AI in Domain-Specific Knowledge Work
- Authors: Guangwei Zhang,
- Abstract summary: Knowledge Protocol Engineering (KPE) is a new paradigm focused on systematically translating human expert knowledge into a machine-executable Knowledge Protocol.<n>We argue that a well-engineered Knowledge Protocol allows a generalist LLM to function as a specialist, capable of decomposing abstract queries and executing complex, multi-step tasks.
- Score: 0.456877715768796
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The capabilities of Large Language Models (LLMs) have opened new frontiers for interacting with complex, domain-specific knowledge. However, prevailing methods like Retrieval-Augmented Generation (RAG) and general-purpose Agentic AI, while powerful, often struggle with tasks that demand deep, procedural, and methodological reasoning inherent to expert domains. RAG provides factual context but fails to convey logical frameworks; autonomous agents can be inefficient and unpredictable without domain-specific heuristics. To bridge this gap, we introduce Knowledge Protocol Engineering (KPE), a new paradigm focused on systematically translating human expert knowledge, often expressed in natural language documents, into a machine-executable Knowledge Protocol (KP). KPE shifts the focus from merely augmenting LLMs with fragmented information to endowing them with a domain's intrinsic logic, operational strategies, and methodological principles. We argue that a well-engineered Knowledge Protocol allows a generalist LLM to function as a specialist, capable of decomposing abstract queries and executing complex, multi-step tasks. This position paper defines the core principles of KPE, differentiates it from related concepts, and illustrates its potential applicability across diverse fields such as law and bioinformatics, positing it as a foundational methodology for the future of human-AI collaboration.
Related papers
- KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning [46.85451489222176]
KERAIA is a novel framework and software platform for symbolic knowledge engineering.<n>It addresses the persistent challenges of representing, reasoning with, and executing knowledge in dynamic, complex, and context-sensitive environments.
arXiv Detail & Related papers (2025-05-07T10:56:05Z) - Position Paper: Towards Open Complex Human-AI Agents Collaboration System for Problem-Solving and Knowledge Management [0.48342038441006807]
This position paper critically surveys a broad spectrum of recent empirical developments on human-AI agents collaboration.<n>We propose a novel conceptual architecture that systematically interlinks the technical details of multi-agent coordination, knowledge management, cybernetic feedback loops, and higher-level control mechanisms.
arXiv Detail & Related papers (2025-04-24T05:57:03Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? [87.71321254733384]
Large language models (LLMs) can generate planning approaches tailored to specific planning problems.<n>LLMs can achieve state-of-the-art performance on some standard IPC domains.<n>We discuss whether these results signify a paradigm shift and how they can complement existing planning approaches.
arXiv Detail & Related papers (2025-01-30T22:21:12Z) - Sample-Efficient Behavior Cloning Using General Domain Knowledge [11.81924485548362]
We use a large language model's coding capability to instantiate a policy structure based on expert domain knowledge expressed in natural language.<n>In experiments with lunar lander and car racing tasks, our approach learns to solve the tasks with as few as 5 demonstrations and is robust to action noise.
arXiv Detail & Related papers (2025-01-27T22:40:11Z) - Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
This paper investigates the use of a multi-agent system to address the limitations of previous algorithms.<n>We highlight the significant potential of an LLM-based multi-agent system in overcoming the challenges that previous methods have encountered.
arXiv Detail & Related papers (2024-09-12T21:39:01Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
We propose a general Knowledge-Injected Curriculum Pretraining framework (KICP) to achieve comprehensive KG learning and exploitation for Knowledge-based question answering tasks.
The KI module first injects knowledge into the LM by generating KG-centered pretraining corpus, and generalizes the process into three key steps.
The KA module learns knowledge from the generated corpus with LM equipped with an adapter as well as keeps its original natural language understanding ability.
The CR module follows human reasoning patterns to construct three corpora with increasing difficulties of reasoning, and further trains the LM from easy to hard in a curriculum manner.
arXiv Detail & Related papers (2024-03-11T03:42:03Z) - LB-KBQA: Large-language-model and BERT based Knowledge-Based Question
and Answering System [7.626368876843794]
We propose a novel KBQA system based on a Large Language Model(LLM) and BERT (LB-KBQA)
With the help of generative AI, our proposed method could detect newly appeared intent and acquire new knowledge.
In experiments on financial domain question answering, our model has demonstrated superior effectiveness.
arXiv Detail & Related papers (2024-02-05T16:47:17Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.