Latent Stochastic Interpolants
- URL: http://arxiv.org/abs/2506.02276v1
- Date: Mon, 02 Jun 2025 21:34:50 GMT
- Title: Latent Stochastic Interpolants
- Authors: Saurabh Singh, Dmitry Lagun,
- Abstract summary: Evidence Interpolants (SI) are a powerful framework for generative modeling, capable of flexibly transforming between two probability distributions.<n>This work presents Latent Interpolants (LSI) enabling joint learning in a latent space with end-to-end optimized models.<n>We demonstrate the efficacy of LSI through comprehensive experiments on the standard large scale ImageNet generation benchmark.
- Score: 4.674313947272508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Interpolants (SI) are a powerful framework for generative modeling, capable of flexibly transforming between two probability distributions. However, their use in jointly optimized latent variable models remains unexplored as they require direct access to the samples from the two distributions. This work presents Latent Stochastic Interpolants (LSI) enabling joint learning in a latent space with end-to-end optimized encoder, decoder and latent SI models. We achieve this by developing a principled Evidence Lower Bound (ELBO) objective derived directly in continuous time. The joint optimization allows LSI to learn effective latent representations along with a generative process that transforms an arbitrary prior distribution into the encoder-defined aggregated posterior. LSI sidesteps the simple priors of the normal diffusion models and mitigates the computational demands of applying SI directly in high-dimensional observation spaces, while preserving the generative flexibility of the SI framework. We demonstrate the efficacy of LSI through comprehensive experiments on the standard large scale ImageNet generation benchmark.
Related papers
- Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.<n>We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.<n>The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A Complete Recipe for Diffusion Generative Models [18.891215475887314]
We present a complete recipe for formulating forward processes in Generative Models (SGMs)
We introduce Phase Space Langevin Diffusion (PSLD), which relies on score-based modeling within an augmented space enriched by auxiliary variables.
arXiv Detail & Related papers (2023-03-03T07:20:58Z) - GFlowNet-EM for learning compositional latent variable models [115.96660869630227]
A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization.
We propose the use of GFlowNets, algorithms for sampling from an unnormalized density.
By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational algorithms.
arXiv Detail & Related papers (2023-02-13T18:24:21Z) - Controllable and Guided Face Synthesis for Unconstrained Face
Recognition [17.08390901848988]
We propose a controllable face synthesis model (CFSM) that can mimic the distribution of target datasets in a style latent space.
CFSM learns a linear subspace with orthogonal bases in the style latent space with precise control over the diversity and degree of synthesis.
Our approach yields significant performance gains on unconstrained benchmarks, such as IJB-B, IJB-C, TinyFace and IJB-S.
arXiv Detail & Related papers (2022-07-20T20:13:29Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Elastic Consistency: A General Consistency Model for Distributed
Stochastic Gradient Descent [28.006781039853575]
A key element behind the progress of machine learning in recent years has been the ability to train machine learning models in largescale distributed-memory environments.
In this paper, we introduce general convergence methods used in practice to train large-scale machine learning models.
Our framework, called elastic elastic bounds, enables us to derive convergence bounds for a variety of distributed SGD methods.
arXiv Detail & Related papers (2020-01-16T16:10:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.