論文の概要: Learning Optimal Posted Prices for a Unit-Demand Buyer
- arxiv url: http://arxiv.org/abs/2506.02284v1
- Date: Mon, 02 Jun 2025 21:48:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.375603
- Title: Learning Optimal Posted Prices for a Unit-Demand Buyer
- Title(参考訳): ユニット・デマンド・バイヤーのための最適ポスト価格の学習
- Authors: Yifeng Teng, Yifan Wang,
- Abstract要約: 本研究では,単価購入者に対して,個別の商品価値を持つ最適アイテム価格を学習する問題について検討する。
文献では、サンプルアクセスモデルと価格クエリモデルという2つの一般的なクエリモデルについて考察する。
- 参考スコア(独自算出の注目度): 7.659947962959846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning the optimal item pricing for a unit-demand buyer with independent item values, and the learner has query access to the buyer's value distributions. We consider two common query models in the literature: the sample access model where the learner can obtain a sample of each item value, and the pricing query model where the learner can set a price for an item and obtain a binary signal on whether the sampled value of the item is greater than our proposed price. In this work, we give nearly tight sample complexity and pricing query complexity of the unit-demand pricing problem.
- Abstract(参考訳): 本研究では,単価の購入者に対して,個別の商品価値を持つ最適アイテム価格を学習する問題について検討し,購入者の価値分布に対するクエリアクセスについて検討する。
本論文では,学習者が各項目値のサンプルを取得可能なサンプルアクセスモデルと,学習者がアイテムの価格を設定し,そのサンプル値が提案した価格よりも大きいかどうかのバイナリ信号を得ることができる価格クエリモデルという,2つの共通クエリモデルについて考察する。
本研究では、単価の価格問題において、ほぼ厳密なサンプルの複雑さと価格要求クエリの複雑さについて述べる。
関連論文リスト
- An Instrumental Value for Data Production and its Application to Data Pricing [107.98697414652479]
本稿では,データ生成プロセスのインストゥルメンタルな価値を捉えるためのアプローチを開発する。
情報経済学における情報設計と信号の古典的概念とどのように結びつくかを示す。
論文 参考訳(メタデータ) (2024-12-24T03:53:57Z) - One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
私たちは、モデルがベースオブジェクトカテゴリ毎に1つの例でトレーニングされる、ワンショットのオープンアフォーダンスラーニング(OOAL)を紹介します。
本稿では,視覚的特徴と手頃なテキスト埋め込みとの整合性を高める,シンプルで効果的な設計の視覚言語フレームワークを提案する。
2つのアベイランスセグメンテーションのベンチマーク実験により、提案手法はトレーニングデータの1%未満で最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-29T16:23:06Z) - Which Model Shall I Choose? Cost/Quality Trade-offs for Text
Classification Tasks [40.102139944928936]
本稿では,テキスト分類タスクに着目し,この課題の定量的分析を行う。
分類精度を主指標として,様々なモデルの分類器の性能を評価する。
次に、推論に必要なサンプルが多数存在するような状況におけるモデル選択について議論する。
論文 参考訳(メタデータ) (2023-01-17T16:51:58Z) - Non-Stochastic CDF Estimation Using Threshold Queries [3.6576781735746513]
実験的な分布を2つの課題で推定する問題に取り組む。
まず、アルゴリズムはデータを直接観察するのではなく、サンプルについて限られた数のしきい値クエリしか要求しない。
第二に、データは独立で同一の分散であると仮定されず、代わりにサンプルを生成する任意のプロセスが可能である。
論文 参考訳(メタデータ) (2023-01-13T18:00:57Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
社会と現実世界の考察は、マルチディストリビューション学習パラダイムの台頭につながっている。
これらの学習パラダイムの最適なサンプル複雑性を確立し、このサンプル複雑性を満たすアルゴリズムを提供する。
アルゴリズムの設計と解析は,ゼロサムゲーム解決のためのオンライン学習手法の拡張によって実現されている。
論文 参考訳(メタデータ) (2022-10-22T19:07:26Z) - One for All: Simultaneous Metric and Preference Learning over Multiple
Users [17.083305162005136]
回答者の群集からの同時選好とメートル法学習について検討した。
我々のモデルは、群衆のアイテム類似性の一般的な尺度を特徴付ける距離メートル法を共同で学習する。
我々は、シミュレーションデータと色嗜好判定のデータセットの両方で、モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-07-07T22:47:13Z) - Active clustering for labeling training data [0.8029049649310211]
本稿では,人間専門家がペアワイズクエリに応答する比較的安価なタスクを実行するための,データ収集のトレーニング環境を提案する。
我々は、アイテムをクラスタリングし、その複雑さを分析するのに必要なクエリの平均数を最小化するアルゴリズムを解析する。
論文 参考訳(メタデータ) (2021-10-27T15:35:58Z) - How to Query An Oracle? Efficient Strategies to Label Data [59.89900843097016]
機械学習におけるデータセットのラベル付けに専門家の託宣を照会する際の基本的な問題について考察する。
本稿では,サンプルをラベル付けするために,ラウンド・バイ・ラウンドでランダム化されたバッチアルゴリズムを提案し,クエリレートが$O(fracNk2)$であることを示す。
さらに,適応型グリージークエリ方式を提案し,三重項クエリを用いたサンプルあたり平均$approx 0.2N$クエリを実現する。
論文 参考訳(メタデータ) (2021-10-05T20:15:35Z) - Active Learning for Contextual Search with Binary Feedbacks [2.6424064030995957]
第一価格オークションなどの応用によって動機付けられた文脈探索における学習問題について検討する。
本稿では,三分探索手法とマージンに基づく能動学習手法を併用した三分探索手法を提案する。
論文 参考訳(メタデータ) (2021-10-03T19:05:29Z) - A Provably Efficient Sample Collection Strategy for Reinforcement
Learning [123.69175280309226]
オンライン強化学習(RL)における課題の1つは、エージェントがその振る舞いを最適化するために、環境の探索とサンプルの活用をトレードオフする必要があることである。
1) 生成モデル(環境のスパースシミュレータなど)にアクセス可能な状態のサンプル数を規定する「対象別」アルゴリズム,2) 所定のサンプルをできるだけ早く生成する「対象別」サンプル収集。
論文 参考訳(メタデータ) (2020-07-13T15:17:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。