A TRPCA-Inspired Deep Unfolding Network for Hyperspectral Image Denoising via Thresholded t-SVD and Top-K Sparse Transformer
- URL: http://arxiv.org/abs/2506.02364v1
- Date: Tue, 03 Jun 2025 02:01:39 GMT
- Title: A TRPCA-Inspired Deep Unfolding Network for Hyperspectral Image Denoising via Thresholded t-SVD and Top-K Sparse Transformer
- Authors: Liang Li, Jianli Zhao, Sheng Fang, Siyu Chen, Hui Sun,
- Abstract summary: We propose a novel deep unfolding network (DU-TRPCA) that enforces stage-wise alternation between two tightly integrated modules: low-rank and sparse.<n>Experiments on synthetic and real-world HSIs demonstrate that DU-TRPCA surpasses state-of-the-art methods under severe mixed noise.
- Score: 20.17660504535571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral images (HSIs) are often degraded by complex mixed noise during acquisition and transmission, making effective denoising essential for subsequent analysis. Recent hybrid approaches that bridge model-driven and data-driven paradigms have shown great promise. However, most of these approaches lack effective alternation between different priors or modules, resulting in loosely coupled regularization and insufficient exploitation of their complementary strengths. Inspired by tensor robust principal component analysis (TRPCA), we propose a novel deep unfolding network (DU-TRPCA) that enforces stage-wise alternation between two tightly integrated modules: low-rank and sparse. The low-rank module employs thresholded tensor singular value decomposition (t-SVD), providing a widely adopted convex surrogate for tensor low-rankness and has been demonstrated to effectively capture the global spatial-spectral structure of HSIs. The Top-K sparse transformer module adaptively imposes sparse constraints, directly matching the sparse regularization in TRPCA and enabling effective removal of localized outliers and complex noise. This tightly coupled architecture preserves the stage-wise alternation between low-rank approximation and sparse refinement inherent in TRPCA, while enhancing representational capacity through attention mechanisms. Extensive experiments on synthetic and real-world HSIs demonstrate that DU-TRPCA surpasses state-of-the-art methods under severe mixed noise, while offering interpretability benefits and stable denoising dynamics inspired by iterative optimization. Code is available at https://github.com/liangli97/TRPCA-Deep-Unfolding-HSI-Denoising.
Related papers
- Towards Robust Image Denoising with Scale Equivariance [10.894808298340994]
We argue that incorporating scale-equivariant structures enables models to better adapt from training on spatially uniform noise to inference on spatially non-uniform degradations.<n>We propose a robust blind denoising framework equipped with two key components: a Heterogeneous Normalization Module (HNM) and an Interactive Gating Module (IGM)
arXiv Detail & Related papers (2025-08-05T00:06:28Z) - Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization [29.080180491898805]
We present HAD-EUNTRFR, which incorporates an enhanced unified non-spectral framework (TR) regularization factors.<n>Our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of terms terms terms accuracy.
arXiv Detail & Related papers (2025-05-23T13:31:13Z) - Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation [21.981038455329013]
We propose a self-guided data augmentation approach that employs adaptive weighting to suppress outlier influence.<n>We show the improvements in both accuracy and computational efficiency compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-04-25T13:03:35Z) - Variational Bayesian Inference for Tensor Robust Principal Component Analysis [2.6623354466198412]
Current approaches often encounter difficulties in accurately capturing the low-rank properties of tensors.<n>We introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior and a generalized sparsity-inducing prior.<n>Our method can be efficiently extended to the weighted tensor nuclear norm model.
arXiv Detail & Related papers (2024-12-25T00:29:09Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Adaptive Semantic-Enhanced Denoising Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution [7.252121550658619]
Denoising Diffusion Probabilistic Model (DDPM) has shown promising performance in image reconstructions.
High-frequency details generated by DDPM often suffer from misalignment with HR images due to model's tendency to overlook long-range semantic contexts.
An adaptive semantic-enhanced DDPM (ASDDPM) is proposed to enhance the detail-preserving capability of the DDPM.
arXiv Detail & Related papers (2024-03-17T04:08:58Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Calibrating Undisciplined Over-Smoothing in Transformer for Weakly Supervised Semantic Segmentation [51.14107156747967]
Weakly supervised semantic segmentation (WSSS) has attracted considerable attention because it requires fewer annotations than fully supervised approaches.<n>We propose an Adaptive Re-Activation Mechanism (AReAM) to control deep-level attention to undisciplined over-smoothing.<n>AReAM substantially improves segmentation performance compared with existing WSSS methods, reducing noise while sharpening focus on relevant semantic regions.
arXiv Detail & Related papers (2023-05-04T19:11:33Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.