論文の概要: VS-Bench: Evaluating VLMs for Strategic Abilities in Multi-Agent Environments
- arxiv url: http://arxiv.org/abs/2506.02387v2
- Date: Tue, 30 Sep 2025 06:49:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.01955
- Title: VS-Bench: Evaluating VLMs for Strategic Abilities in Multi-Agent Environments
- Title(参考訳): VS-Bench: マルチエージェント環境における戦略的能力評価
- Authors: Zelai Xu, Zhexuan Xu, Xiangmin Yi, Huining Yuan, Mo Guang, Kaiwen Long, Xinlei Chen, Yi Wu, Chao Yu, Yu Wang,
- Abstract要約: マルチエージェント環境における戦略的能力のための視覚言語モデルを評価するベンチマークであるVisual Strategic Bench (VS-Bench)を紹介する。
VLMエージェントの性能は、要素認識精度で測定された知覚、次のアクション予測精度で測定された戦略的推論、正規化エピソードリターンで測定された意思決定の3つの次元にわたって評価される。
- 参考スコア(独自算出の注目度): 25.534332634912005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and textual contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic abilities in multi-agent environments. VS-Bench comprises ten vision-grounded environments that cover cooperative, competitive, and mixed-motive interactions. The performance of VLM agents is evaluated across three dimensions: perception measured by element recognition accuracy; strategic reasoning measured by next-action prediction accuracy; and decision-making measured by normalized episode return. Extensive experiments on fifteen leading VLMs show that, although current models exhibit strong perception abilities, there remains a significant gap to optimal performance in reasoning and decision-making, with the best-performing model attaining 46.6% prediction accuracy and 31.4% normalized return. We further analyze the key factors influencing performance, conduct human experiments, and examine failure modes to provide a deeper understanding of VLMs' strategic abilities. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.
- Abstract(参考訳): ビジョン言語モデル(VLM)の最近の進歩は、インタラクティブなエージェントタスクにその能力を拡張しているが、既存のベンチマークはシングルエージェントやテキストのみの環境に限られている。
対照的に、現実世界のシナリオは、リッチな視覚的およびテキスト的コンテキスト内で相互作用する複数のエージェントを伴い、マルチモーダルな観察と戦略的相互作用の両方で課題を提起する。
このギャップを埋めるため,マルチエージェント環境におけるVLMの戦略的能力を評価するマルチモーダルベンチマークであるVisual Strategic Bench (VS-Bench)を紹介した。
VS-Benchは、協調的、競争的、混在するモチベーションをカバーした10のヴィジュアルグラウンド環境で構成されている。
VLMエージェントの性能は、要素認識精度で測定された知覚、次のアクション予測精度で測定された戦略的推論、正規化エピソードリターンで測定された意思決定の3つの次元にわたって評価される。
15個のVLMの大規模な実験により、現在のモデルは強い知覚能力を示すが、推論と意思決定における最適性能には大きなギャップが残っており、最高の性能のモデルは46.6%の予測精度と31.4%の正規化リターンを達成している。
さらに,VLMの戦略能力をより深く理解するために,性能に影響を及ぼす重要な要因を分析し,人体実験を行い,失敗モードを検証した。
既存のモデルの評価の標準化と限界の強調により、戦略的マルチモーダルエージェントの研究の基盤としてVS-Benchを構想する。
コードとデータはhttps://vs-bench.github.io.comで公開されている。
関連論文リスト
- Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks [94.19506319646376]
本稿では,実世界のマルチモーダル環境での視覚中心エージェント評価のためのベンチマークであるAgent-Xを紹介する。
Agent-Xは、828のエージェントタスクと、イメージ、マルチイメージ比較、ビデオ、命令テキストを含む、真の視覚的コンテキストを備えている。
その結果、GPT、Gemini、Qwenファミリーを含む最高のパフォーマンスモデルでさえ、多段階視覚タスクの解決に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2025-05-30T17:59:53Z) - V-MAGE: A Game Evaluation Framework for Assessing Vision-Centric Capabilities in Multimodal Large Language Models [84.27290155010533]
本稿では,視覚中心型多機能ゲーム評価(V-MAGE)について紹介する。
V-MAGEは、30以上の慎重に構築された評価シナリオからなる5つの異なるビデオゲームを特徴としている。
V-MAGEは、動的かつインタラクティブな設定において、MLLMの視覚的および推論能力を改善するために実行可能な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-08T15:43:01Z) - EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents [63.43699771428243]
EmbodiedBenchは、視覚駆動型エンボディエージェントを評価するために設計された広範囲なベンチマークである。
我々はEmbodiedBench内のプロプライエタリおよびオープンソースMLLMを24件評価した。
MLLMは高いレベルのタスクで優れるが、低レベルの操作に苦戦し、最高のモデルであるGPT-4oは平均28.9%のスコアしか獲得できなかった。
論文 参考訳(メタデータ) (2025-02-13T18:11:34Z) - iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs [4.381263829108405]
VLM(Vision-Language Models)は、空間的推論と視覚的アライメントに苦しむことで知られている。
エージェントとして機能するVLMの空間的推論能力を評価するために設計された,インタラクティブなマルチモーダルベンチマークであるiVISPARを紹介する。
論文 参考訳(メタデータ) (2025-02-05T14:29:01Z) - AVTrustBench: Assessing and Enhancing Reliability and Robustness in Audio-Visual LLMs [70.4578433679737]
我々は9つの細工されたタスクにまたがる600万のサンプルからなるAudio-Visual Trustworthiness Assessment Benchmark (AVTrustBench)を紹介する。
ベンチマークを用いて、13の最先端AVLLMを広範囲に評価した。
その結果、既存のモデルのほとんどは、人間のような理解を達成できないことが判明した。
論文 参考訳(メタデータ) (2025-01-03T23:03:24Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMは印象的な視覚的理解能力を示しており、エージェントに適用される可能性がある。
既存のベンチマークは、主に言語部分における推論能力を評価する。
MageBenchは推論機能指向のマルチモーダルエージェントベンチマークである。
論文 参考訳(メタデータ) (2024-12-05T17:08:19Z) - BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games [44.16513620589459]
本稿では,大規模言語モデル(LLM)と視覚言語モデル(VLM)のエージェント能力を評価する新しいベンチマークであるBALROGを紹介する。
私たちのベンチマークでは、熟練していない人間が数秒で解決できるタスクや、習得に何年もかかるような極めて困難なタスクなど、さまざまな難易度を持つ既存の強化学習環境を取り入れています。
より簡単なゲームでは,現行のモデルが部分的には成功しているが,より困難なタスクに苦しむことが示唆された。
論文 参考訳(メタデータ) (2024-11-20T18:54:32Z) - FB-Bench: A Fine-Grained Multi-Task Benchmark for Evaluating LLMs' Responsiveness to Human Feedback [33.532239489610056]
FB-Benchは、中国語の実際の使用シナリオ下での人間のフィードバックに対する大規模言語モデルの応答性を評価するために設計されたベンチマークである。
我々は,多種多様なLLMを広範囲に評価し,異なる相互作用シナリオにおける性能の顕著な変動を明らかにした。
我々の研究結果は、現在のモデルの強みと限界の両方を強調し、将来の研究に価値ある洞察と方向性を提供する。
論文 参考訳(メタデータ) (2024-10-12T07:40:01Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Benchmarking Sequential Visual Input Reasoning and Prediction in
Multimodal Large Language Models [21.438427686724932]
本稿では,MLLMの予測推論能力を様々なシナリオで評価する新しいベンチマークを提案する。
本ベンチマークでは,抽象パターン推論,人間活動予測,物理的相互作用予測という3つの重要な領域を対象としている。
実験により,提案したベンチマークの音質と評価方法が検証された。
論文 参考訳(メタデータ) (2023-10-20T13:14:38Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
視覚言語モデルのマルチモーダル能力を評価するためのベンチマークであるMMBenchを提案する。
MMBenchは、よく設計された品質制御スキームで慎重にキュレートされている。
MMBenchは英語版と中国語版の両方で複数の質問を取り入れている。
論文 参考訳(メタデータ) (2023-07-12T16:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。