論文の概要: Weak Supervision for Real World Graphs
- arxiv url: http://arxiv.org/abs/2506.02451v1
- Date: Tue, 03 Jun 2025 05:16:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.287199
- Title: Weak Supervision for Real World Graphs
- Title(参考訳): 現実のグラフのための弱スーパービジョン
- Authors: Pratheeksha Nair, Reihaneh Rabbany,
- Abstract要約: 弱教師付きグラフコントラスト学習フレームワークであるWSNETを提案する。
WSNETは、F1スコアの最大15%まで、対照的でノイズの多いラベル学習手法の状態を一貫して上回ります。
- 参考スコア(独自算出の注目度): 6.821598757786516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Node classification in real world graphs often suffers from label scarcity and noise, especially in high stakes domains like human trafficking detection and misinformation monitoring. While direct supervision is limited, such graphs frequently contain weak signals, noisy or indirect cues, that can still inform learning. We propose WSNET, a novel weakly supervised graph contrastive learning framework that leverages these weak signals to guide robust representation learning. WSNET integrates graph structure, node features, and multiple noisy supervision sources through a contrastive objective tailored for weakly labeled data. Across three real world datasets and synthetic benchmarks with controlled noise, WSNET consistently outperforms state of the art contrastive and noisy label learning methods by up to 15% in F1 score. Our results highlight the effectiveness of contrastive learning under weak supervision and the promise of exploiting imperfect labels in graph based settings.
- Abstract(参考訳): 実世界のグラフにおけるノード分類は、ラベルの不足とノイズに悩まされることが多い。
直接の監督は限られているが、そのようなグラフには弱い信号、ノイズ、間接的な手がかりがしばしば含まれており、学習を知らせることができる。
本稿では、これらの弱信号を利用して、頑健な表現学習を導く、新しい弱教師付きグラフコントラスト学習フレームワークであるWSNETを提案する。
WSNETは、弱いラベル付きデータ用に調整された対照的な目的を通じて、グラフ構造、ノード機能、および複数のノイズ管理ソースを統合する。
3つの実世界のデータセットと、制御されたノイズを伴う合成ベンチマークにおいて、WSNETは一貫して、最先端のコントラストとノイズの多いラベル学習手法をF1スコアで最大15%上回っている。
その結果、弱い監督下でのコントラスト学習の有効性と、グラフベースの設定で不完全なラベルを活用できることが強調された。
関連論文リスト
- FedRGL: Robust Federated Graph Learning for Label Noise [5.296582539751589]
Federated Graph Learning(FGL)は、グラフニューラルネットワークに基づく分散機械学習パラダイムである。
本稿では,FedRGLと呼ばれるラベルノイズを用いた頑健なグラフ学習手法を提案する。
FedRGLは、様々なノイズ率、タイプ、クライアント数で12のベースライン手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-28T04:37:04Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Learning on Graphs under Label Noise [5.909452203428086]
我々は,ラベルノイズのあるグラフ上での学習問題を解決するために,CGNN(Consistent Graph Neural Network)と呼ばれる新しいアプローチを開発した。
具体的には、グラフの対比学習を正規化用語として採用し、拡張ノードの2つのビューが一貫した表現を持つように促進する。
グラフ上の雑音ラベルを検出するために,ホモフィリー仮定に基づくサンプル選択手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T01:38:01Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
本稿では,この問題を解決するために,メタ学習アルゴリズムを用いた新しいネットワークアーキテクチャを提案する。
基本的に,我々のMeta-PNフレームワークは,メタ学習ラベルの伝搬戦略を用いて,未ラベルノード上の高品質な擬似ラベルを推論する。
我々のアプローチは、様々なベンチマークデータセットの既存の技術と比較して、容易で実質的なパフォーマンス向上を提供する。
論文 参考訳(メタデータ) (2021-12-18T00:11:56Z) - Unified Robust Training for Graph NeuralNetworks against Label Noise [12.014301020294154]
半監督設定でノイズの多いラベルをグラフ上で学習するための新しいフレームワークである UnionNET を提案します。
提案手法は,GNNを頑健に訓練し,ラベル修正を同時に行うための統一的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-03-05T01:17:04Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z) - Learn to Propagate Reliably on Noisy Affinity Graphs [69.97364913330989]
近年の研究では,ラベル伝搬によるラベル付きデータの利用により,ラベル付けコストを大幅に削減できることが示されている。
ラベルを確実に伝播する方法、特に未知の外れ値を持つデータセットでは、依然として未解決の問題である。
本稿では,大規模実世界のデータ上でラベルを確実に伝播させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-17T07:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。