Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule
- URL: http://arxiv.org/abs/2409.17566v1
- Date: Thu, 26 Sep 2024 06:28:05 GMT
- Title: Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule
- Authors: Hongtao Huang, Xiaojun Chang, Lina Yao,
- Abstract summary: Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images.
Recent techniques have been employed to automatically search for faster generation processes.
We introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models.
- Score: 50.260693393896716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images. Despite their effectiveness, these models often require significant computational resources owing to their numerous sequential denoising steps and the significant inference cost of each step. Recently, Neural Architecture Search (NAS) techniques have been employed to automatically search for faster generation processes. However, NAS for diffusion is inherently time-consuming as it requires estimating thousands of diffusion models to search for the optimal one. In this paper, we introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models by concurrently optimizing generation steps and network structures. Specifically, we partition the generation process into isometric step segments, each sequentially composed of a full step, multiple partial steps, and several null steps. The full step computes all network blocks, while the partial step involves part of the blocks, and the null step entails no computation. Flexiffusion autonomously explores flexible step combinations for each segment, substantially reducing search costs and enabling greater acceleration compared to the state-of-the-art (SOTA) method for diffusion models. Our searched models reported speedup factors of $2.6\times$ and $1.5\times$ for the original LDM-4-G and the SOTA, respectively. The factors for Stable Diffusion V1.5 and the SOTA are $5.1\times$ and $2.0\times$. We also verified the performance of Flexiffusion on multiple datasets, and positive experiment results indicate that Flexiffusion can effectively reduce redundancy in diffusion models.
Related papers
- SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow [24.213303324584906]
We develop small, efficient one-step diffusion models based on the powerful rectified flow framework.
We train a one-step diffusion model with an FID of 5.02 and 15.7M parameters, outperforming the previous state-of-the-art one-step diffusion model.
arXiv Detail & Related papers (2024-07-17T16:38:45Z) - Memory-Efficient Fine-Tuning for Quantized Diffusion Model [12.875837358532422]
We introduce TuneQDM, a memory-efficient fine-tuning method for quantized diffusion models.
Our method consistently outperforms the baseline in both single-/multi-subject generations.
arXiv Detail & Related papers (2024-01-09T03:42:08Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
Diffusion models, emerging as powerful deep generative tools, excel in various applications.
However, their remarkable generative performance is hindered by slow training and sampling.
This is due to the necessity of tracking extensive forward and reverse diffusion trajectories.
We present a multi-stage framework inspired by our empirical findings to tackle these challenges.
arXiv Detail & Related papers (2023-12-14T17:48:09Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - AutoDiffusion: Training-Free Optimization of Time Steps and
Architectures for Automated Diffusion Model Acceleration [57.846038404893626]
We propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training.
Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 $times$ 64 with only four steps, compared to 138.66 with DDIM.
arXiv Detail & Related papers (2023-09-19T08:57:24Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.