論文の概要: VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
- arxiv url: http://arxiv.org/abs/2506.02537v1
- Date: Tue, 03 Jun 2025 07:24:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.394175
- Title: VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
- Title(参考訳): VisuRiddles: 抽象視覚推論における多モーダル大言語モデルのための素粒子知覚
- Authors: Hao Yan, Handong Zheng, Hao Wang, Liang Yin, Xingchen Liu, Zhenbiao Cao, Xinxing Su, Zihao Chen, Jihao Wu, Minghui Liao, Chao Weng, Wei Chen, Yuliang Liu, Xiang Bai,
- Abstract要約: マルチモーダル大規模言語モデル(MLLM)の最近の進歩は、多くの推論タスクにおいて、その性能を著しく向上させてきた。
AVR(Abstract Visual Reasoning)は、抽象グラフィックの知覚に制限があるため、依然として重要な課題である。
PRSのベンチマークであるVisuRiddlesを提案し、モデルの推論能力を評価するために精巧に構築されたタスクを特徴付ける。
第二に、パーセプチュアル・リドル・シンセサイザー (PRS) を導入する。
- 参考スコア(独自算出の注目度): 66.84770041828462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
- Abstract(参考訳): マルチモーダル大規模言語モデル(MLLM)の最近の進歩は、多くの推論タスクにおいて、その性能を著しく向上させてきた。
しかし、抽象ビジュアル推論(AVR)は、主に抽象グラフィックの知覚に制限があるため、依然として重要な課題である。
この問題に対処するために、我々は現在のMLLMのボトルネックを調査し、学習データを合成し、それらの抽象的な視覚的知覚を改善する。
まず、AVRのベンチマークであるVisuRiddlesを提案し、5つのコア次元と2つのハイレベル推論カテゴリにわたるモデルの推論能力を評価するために、精巧に構築されたタスクを特徴付ける。
第二に、パーセプチュアル・リドル・シンセサイザー (PRS) を導入する。
PRSは、抽象グラフィックのための貴重なトレーニングデータを生成するだけでなく、微粒な知覚記述も提供し、中間的推論段階を監督し、トレーニングの有効性とモデル解釈性の両方を改善する。
VisuRiddlesに関する大規模な実験結果から,視覚の微粒化が主要なボトルネックであることを実証し,これらの課題に対する現代のMLLMの性能向上を図った。
私たちのコードとデータセットはhttps://github.com/yh-hust/VisuRiddlesでリリースされます。
関連論文リスト
- Don't Look Only Once: Towards Multimodal Interactive Reasoning with Selective Visual Revisitation [22.27973335431714]
MLLM(Multimodal Large Language Models)の軽量拡張であるv1を提案する。
v1は単純なポイントアンドコピー機構を導入し、推論プロセスを通してモデルが関連する画像領域を動的に検索できるようにする。
この結果から,動的視覚アクセスはマルチモーダル推論の高速化に有望な方向であることが示唆された。
論文 参考訳(メタデータ) (2025-05-24T19:30:47Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
マルチモーダル大規模言語モデル(MLLM)の推論能力向上を目的とした新しいフレームワークであるObserve-R1を提案する。
我々は,RL学習におけるデータサンプルの難易度と難易度に応じて整理し,サンプル化したNeuraLadderデータセットを構築した。
Qwen2.5-VL-3B と Qwen2.5-VL-7B のニューララダーデータセットから得られた20kサンプルによる実験により、Observe-R1 は推論と一般的なベンチマークの両方において、より大きな推論モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2025-05-18T14:08:03Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
MLLM(Multimodal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なツールとなっている。
本稿では,MLLMの知覚的理解と抽象的関係推論を評価するためのベンチマークVOILAを紹介する。
我々は,現在のMLLMが画像間関係の理解に苦慮し,高レベルの関係推論において限られた能力を示すことを明らかにした。
論文 参考訳(メタデータ) (2025-02-25T23:36:19Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
本稿では、これまで見過ごされていた2つの重要なビデオ推論スキルを探索するためのテストベッドとして設計された、新しいデータセットであるTropes in Movies (TiM)を紹介する。
映画ストーリーテリングのトポロジを利用して、TiMは最先端のLCMベースのアプローチの推論能力を評価する。
これらの欠陥に対処するために、FEVoRI(Face-Enhanced Viper of Role Interactions)とConQueR(Context Query Reduction)を提案する。
論文 参考訳(メタデータ) (2024-06-16T12:58:31Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
本稿では,MLLMの微細な画像理解能力を高めるための新しい枠組みを提案する。
本稿では,既存のデータセットのアノテーションを活用して,命令チューニングデータセットを低コストで構築する手法を提案する。
本研究では,Qwen-VLよりも5.2%精度が向上し,Kosmos-2の精度が24.7%向上したことを示す。
論文 参考訳(メタデータ) (2023-10-01T05:53:15Z) - What Makes for Good Visual Tokenizers for Large Language Models? [26.488269091290597]
優れた視覚的トークン化を実現するための適切な事前学習手法について検討し,LLM(Large Language Models)とMLLM(Multimodal Large Language Models)について検討した。
支配的手法(DeiT, CLIP, MAE, DINO)で事前訓練した視覚トークン化剤について検討する。
GVT(Good Visual Tokenizer)を備えたMLLMは,複数スケールで強力な視覚理解能力を示す。
論文 参考訳(メタデータ) (2023-05-20T16:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。