V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
- URL: http://arxiv.org/abs/2506.02580v1
- Date: Tue, 03 Jun 2025 08:00:57 GMT
- Title: V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
- Authors: Xuewen Luo, Fengze Yang, Fan Ding, Xiangbo Gao, Shuo Xing, Yang Zhou, Zhengzhong Tu, Chenxi Liu,
- Abstract summary: V2X-UniPool is a unified framework that integrates multimodal Vehicle-to-Everything (V2X) data into a time-indexed and language-based knowledge pool.<n>Our system enables ADs to perform accurate, temporally consistent reasoning over both static environment and dynamic traffic context.
- Score: 13.181643929201666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge-driven autonomous driving systems(ADs) offer powerful reasoning capabilities, but face two critical challenges: limited perception due to the short-sightedness of single-vehicle sensors, and hallucination arising from the lack of real-time environmental grounding. To address these issues, this paper introduces V2X-UniPool, a unified framework that integrates multimodal Vehicle-to-Everything (V2X) data into a time-indexed and language-based knowledge pool. By leveraging a dual-query Retrieval-Augmented Generation (RAG) mechanism, which enables retrieval of both static and dynamic knowledge, our system enables ADs to perform accurate, temporally consistent reasoning over both static environment and dynamic traffic context. Experiments on a real-world cooperative driving dataset demonstrate that V2X-UniPool significantly enhances motion planning accuracy and reasoning capability. Remarkably, it enables even zero-shot vehicle-side models to achieve state-of-the-art performance by leveraging V2X-UniPool, while simultaneously reducing transmission cost by over 99.9\% compared to prior V2X methods.
Related papers
- REACT: A Real-Time Edge-AI Based V2X Framework for Accident Avoidance in Autonomous Driving System [12.513296074529727]
This paper presents REACT, a real-time, V2X-integrated trajectory optimization framework built upon a fine-tuned lightweight VLM.<n>To ensure real-time performance on edge devices, REACT incorporates edge adaptation strategies that reduce model complexity and accelerate inference.<n>ReACT achieves state-of-the-art performance, a 77% collision rate reduction, a 48.2% Video Panoptic Quality (VPQ), and a 0.57-second inference latency on the Jetson AGX Orin.
arXiv Detail & Related papers (2025-08-01T20:16:04Z) - Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition [57.698383942708]
Vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety.<n>We organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning.<n>This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration.
arXiv Detail & Related papers (2025-07-29T09:06:40Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.<n>The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models [13.716889927164383]
This paper introduces V2X-VLM, an innovative E2E vehicle-infrastructure cooperative autonomous driving (VICAD) framework with Vehicle-to-Everything (V2X) systems and large vision-language models (VLMs)
V2X-VLM is designed to enhance situational awareness, decision-making, and ultimate trajectory planning by integrating multimodel data from vehicle-mounted cameras, infrastructure sensors, and textual information.
Evaluations on the DAIR-V2X dataset show that V2X-VLM outperforms state-of-the-art cooperative autonomous driving methods.
arXiv Detail & Related papers (2024-08-17T16:42:13Z) - Unified End-to-End V2X Cooperative Autonomous Driving [21.631099800753795]
UniE2EV2X is a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network.
The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure.
We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.
arXiv Detail & Related papers (2024-05-07T03:01:40Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration.
The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data.
arXiv Detail & Related papers (2023-09-26T20:26:03Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.